
Faculty of Engineering and Technology

Master of Computing (MCOM)

Master Thesis

Intrusion Detection System using Feature
Ranking and GWO

و السمات تصنيف أسلوب باستخدام الاختراقات عن الكشف نظام
الرمادية الذئاب قطيع خوارزمية

Author:

Ameer Nasrallah

Supervisor:

Dr. Iyad Tumar

This Thesis was submitted in partial fulfilment of the requirements

for the Master’s Degree in Computing from the Faculty of Graduate

Studies at Birzeit University, Palestine.

September 7, 2020

Intrusion Detection System using Feature
Ranking and GWO

By: Ameer Nasrallah

Approved by the thesis committee

Dr. Iyad Tumar

Dr. Majdi Mafarja

Dr. Ahmad Alsadeh

Abstract

Intrusion detection system (IDS) is an important component in modern network

environments. An IDS analyzes network traffic to detect abnormal activities. A

challenging task in IDS is the ability to update itself and detect anomalies in short

time. Therefore, many machine learning techniques have been applied on IDS.

But they still use many attributes of network traffic which sometimes decreases the

detection rate and always increases detection time.

In this study, we propose a hybrid feature selection approach to address these

challenges. The first stage of the proposed approach is feature ranking using ANOVA

F-value. In this stage, a percentage of the top ranked features will be selected. In

the second stage, a wrapper approach with GWO as a search strategy, and Random

Forest for evaluation is used. In this stage, the reduced dataset from the first stage

is the input, and the output is an optimal subset of features.

We tested the proposed approach on NSL-KDD dataset, and compared its per-

formance with the performance of few classifiers without feature selection. We were

able to achieve a dimensionality reduction of 68%, while achieving accuracy, detec-

tion rate, and false alarm rate similar to those of the chosen classifiers. Moreover,

we reduced the search time of GWO by 18%. Moreover, we were able to reduce

the training time of KNN and SVM by 77% and 62% respectively in multi-class

classification, and by 59% and 68% respectively in binary classification. Similarly,

the testing time of KNN and SVM was reduced by 93% and 46% respectively in

multi-class classification, and and by 89% and 48% respectively in binary classifica-

tion.

2

الملخص

النظام هذا يقوم الحديثة. الشبكات بيئات في مهمًا مكونًا الاختراقات كشف نظام يعد
أصعب إحدى الاعتيادية. غير الأنشطة لاكتشاف الشبكة في تمر التي البيانات بتحليل
فيوقت المريبة الحالات واكتشاف تحديثنفسها على القدرة هي الأنظمة هذه في المهام
من بالرغم و الأنظمة. هذه على الآلي التعلم تقنيات من العديد تطبيق تم لذلك، قصير.
هذا و الشبكة، في تمر التي البيانات كلسمات تحليل على التقنياتتعتمد هذه تزال لا ذلك،
المطلوبللاكتشاف. الوقت من دائمًا اكتشافالهجماتويزيد معدل من أحيانًا يقلل بدوره

السمات مكونةمنخطوتينلاختيار البحثطريقة نعرضفيهذا التحديات، هذه لمواجهة
الطريقةهيتصنيفالسماتباستخدام الأولىمنهذه المرحلة فيبياناتالشبكة. المميزة
اختيار سيتم ، المرحلة هذه في .ANOVA F-value التباين تحليل باسم تعرف طريقة
الأولىستكون المرحلة في اختيارها تم التي البيانات هذه تصنيفا. السمات أعلى من نسبة
الذئاب قطيع خوارزمية باستخدام سنقوم الثانية، المرحلة في الثانية. للمرحلة مدخلا

السمات. أفضل عن للبحث كاستراتيجية GWO الرمادية

أداءها وقارننا ،NSL-KDD تدعى بيانات مجموعة على المقترحة الطريقة تجربة تم
السمات عدد خفض من تمكنا السمات. اختيار مرحلة دون المصنفات من قليل عدد بأداء
للمصنفات الخاطئ الإنذار الكشفومعدل ومعدل نفسالدقة تقريبا تحقيق مع ،68% بنسبة
بنسبة GWO خوارزمية في البحث وقت تقليل من تمكنا و كما باختيارها. قمنا التي
بنسبة SVM و KNN مصنفات تدريب وقت تقليل من تمكنا ذلك، إلى بالإضافة .18%
التوالي على 68% و 59% و الفئات، متعدد التصنيف في التوالي على 62% و 77%
بنسبة SVM و KNN مصنفات اختبار وقت تقليل تم وبالمثل، الثنائي. التصنيف في
التوالي على 48% و 89% و الفئات، متعدد التصنيف في التوالي على 46% و 93%

الثنائي. التصنيف في

3

Acknowledgements

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing

this thesis.

It would not have been possible to complete this thesis without the support of the

loved ones around me. My dear mother, without her support, I would not have even

thought of continuing my academic journey. My dear father, for him being a role

model in determination and hard work. My dear wife, for her patience, optimism

and support throughout the past two years and throughout the difficult moments.

My son Yahya, for the joy he brought to our family. I would like to thank my

brothers and their families, and my friends.

And of course I would like to thank my supervisor Dr. Iyad Tumar, for his

patience and his open mind. I have learned a lot from you, not just from academia.

And I would like to thank Dr. Majdi Mafarja for his kind assistance throughout

the journey

4

Contents

1 Introduction 10

1.1 Intrusion Detection System (IDS) . 11

1.2 Machine Learning in Anomaly-based Detection 11

1.3 Problem Statement and Motivation 13

1.4 Thesis Outline . 15

2 Foundation and Literature Review 16

2.1 Theoretical Foundation . 16

2.1.1 Feature Selection . 19

2.1.1.1 Filter Approaches 19

2.1.1.2 Wrapper Approaches 20

2.1.1.3 Embedded Approaches 20

2.1.1.4 Hybrid Approaches 21

2.1.2 Metaheursitc Algorithms . 21

2.1.2.1 Single-based Metaheuristic Algorithms 22

2.1.2.2 Population-based Metaheuristic Algorithms 22

2.2 Related Work . 23

2.3 Summary . 29

3 Hybrid Feature Selection using Feature Ranking and GWO 31

3.1 Overview . 31

3.2 NSL-KDD . 33

3.2.1 Overview . 33

3.2.2 Description . 34

5

Intrusion Detection System using Feature Ranking and GWO

3.3 Nominal Features Transformation using

Probability Density Function (PDF) 38

3.4 Numerical Features Normalization

using Min-Max . 38

3.5 Feature Ranking using ANOVA F-value 39

3.6 Feature Selection using BGWO . 43

3.7 Multi-class Classification using

One-vs-rest Strategy . 47

3.8 Summary . 50

4 Experimental Setup and Evaluation Metrics 52

4.1 Methodology . 52

4.2 Environment and Implementation Tools 53

4.3 Evaluation Metrics . 54

5 Result Analysis 59

5.1 Parameters Tuning for GWO . 59

5.2 Classification Performance and Selected Features 66

5.3 Summary . 85

6 Conclusion and Future Work 86

References 89

A Implementation 98

6

List of Figures

2.1 Hyperplane example . 17

2.2 Decision tree example . 18

2.3 Machine Learning Algorithms in Anomaly-based IDS 25

3.1 Proposed approach flowchart . 32

3.2 F-Distribution F(4, 26) . 42

3.3 One-vs-rest (OvR) Dataset Separation 48

3.4 One-vs-rest (OvR) Approach . 49

4.1 Example on how to calculate TP, FN and FP for U2R class 57

5.1 GWO Convergence curve when Population is 5 60

5.2 GWO Convergence curve when Population is 10 61

5.3 GWO Convergence curve when Population is 20 61

5.4 GWO Selected Features curve when Population is 5 62

5.5 GWO Selected Features curve when Population is 10 62

5.6 GWO Selected Features curve when Population is 20 63

5.7 GWO Avg Training Time when Population is 5 63

5.8 GWO Avg Training Time when Population is 10 64

5.9 GWO Avg Training Time when Population is 20 64

5.10 Average ANOVA F-value for each feature in NSL-KDD. All the 20

features below the horizontal grey line were selected 67

5.11 Most frequent features selected by GWO with a threshold of 50% . . 68

5.12 Classifier Time Performance . 69

5.13 Classifier Overall Accuracy . 70

5.14 Normal Class Detection Rate . 70

7

Intrusion Detection System using Feature Ranking and GWO

5.15 DoS Class Detection Rate . 71

5.16 Probe Class Detection Rate . 71

5.17 R2L Class Detection Rate . 72

5.18 U2R Class Detection Rate . 72

5.19 Normal Class False Alarm Rate . 73

5.20 DoS Class False Alarm Rate . 73

5.21 Probe Class False Alarm Rate . 74

5.22 R2L Class False Alarm Rate . 74

5.23 U2R Class False Alarm Rate . 75

5.24 Normal Class Precision . 75

5.25 DoS Class Precision . 76

5.26 Probe Class Precision . 76

5.27 R2L Class Precision . 77

5.28 U2R Class Precision . 77

5.29 Normal Class F1 score . 78

5.30 DoS Class F1 score . 78

5.31 Probe Class F1 score . 79

5.32 R2L Class F1 score . 79

5.33 U2R Class F1 score . 80

5.34 Binary Classifier Time Performance 81

5.35 Binary Classifier Overall Accuracy 82

5.36 Binary Classifier Detection Rate . 82

5.37 Binary Classifier False Alarm Rate 83

5.38 Binary Classifier Precision . 83

5.39 Binary Classifier F1 score . 84

8

List of Tables

2.1 IDS Datasets created from real network traffic 24

3.1 NSL-KDD Attack Distribution . 34

3.2 NSL-KDD Features . 36

3.3 NSL-KDD ANOVA Example . 40

3.4 F-value calculation template . 42

3.5 F-value calculation for service feature 43

3.6 F-value calculation for flag feature 43

4.1 Machine specs . 53

4.2 Confusion matrix . 55

4.3 Multi-class confusion matrix . 56

4.4 Normal Confusion matrix . 58

4.5 DoS Confusion matrix . 58

4.6 Probe Confusion matrix . 58

4.7 R2L Confusion matrix . 58

4.8 U2R Confusion matrix . 58

5.1 Chosen values for ANOVA F-value threshold, GWO population, and

GWO iterations . 60

5.2 The starting and ending values of the fitness with 10 iterations 65

5.3 GWO with 50% threshold vs. GWO only 67

9

Chapter 1

Introduction

Nowadays, data is being generated, collected, and stored in high volumes and

in almost all fields. This high rate of data generation not only requires advanced

storage techniques, but it also requires protecting it against unauthorized access.

Such protection has become more important, because we are in the age of cloud

and social media. These technologies are now collecting sensitive data, including

personal and financial data. In fact, it is expected that by 2022, the amount of data

being stored by different cloud providers, such as Google, AWS, and Facebook will

be increased hundred times [1].

Even though the recent advancements in information and communications tech-

nology (ICT) enabled many storage and security technologies to be applicable, they

also played a role in increasing the number of network and cyber attacks. A recent

statistics on cyber security [2] showed that it is expected to have three trillion cyber

attacks by 2021 with high probability of zero-day attacks.

Therefore, and due to the increased number of people that use the internet

in daily basis, there is an increased need for suitable protection systems. There

have been some security mechanisms, such as data encryption, user authentication,

anti-virus, and firewall. But, these traditional mechanisms failed to cope with the

variety of attack patterns [3]. Accordingly, intrusion detection system (IDS) became

a necessity.

10

Intrusion Detection System using Feature Ranking and GWO

1.1 Intrusion Detection System (IDS)

An intrusion detection system (IDS) is a system that automatically checks and

analyzes network flow to detect and prevent abnormal activities [4]. This includes

monitoring both user and system behaviors, such as the unauthorized access to

network resources, and the analysis of network packet fields (e.g. IP address, flag,

ports) [5]. Upon detecting an intrusion, the IDS alarms it to the management [6].

Based on the deployment of the IDS, it can be categorized into Host based IDS

(HIDS) and Network based IDS (NIDS) [5]. As the name indicates, HIDS is installed

on the host computer to check and analyze the log files after an intrusion happens.

Therefore, HIDS is not useful for large network environments [4]. On the other

hand, NIDS is installed on a network management system. NIDS works in real time

to monitor network traffic, and it uses detection algorithms to identify potential

intrusions.

Furthermore, an IDS can be classified based on the detection mechanism to

knowledge-based [4] and behavior-based [5]. In knowledge-based (or signature-

based) detection, the IDS uses misuse detection to detect known attacks by compar-

ing between received packets and a predefined set of collected data (e.g. signature

files). While in behavior-based (or anomaly-based) detection, the IDS uses anomaly

detection to detect unknown attacks by comparing the system state with the nor-

mal activity profile it builds. Behavior-based detection suffers from high false alarm

rates. Despite that, it is still considered better than knowledge-based detection as

it can detect novel or zero-day attacks. Hence, anomaly-based detection got more

attention during the past twenty years.

1.2 Machine Learning in Anomaly-based Detec-

tion

The main challenge in anomaly-based IDS is to enable it to update itself and de-

tect attacks in short time [4]. Consequently, there have been many research efforts

to apply machine learning techniques in intrusion detection. These techniques in-

cluded few semi-supervised approaches [7], and many supervised approaches [8] [9].

11

Intrusion Detection System using Feature Ranking and GWO

These approaches were applied to common datasets in IDS, such as: NSL-KDD [10],

ISCX-IDS-2012 [11] and CIC-IDS-2017 [12].

As other datasets in different fields, IDS datasets usually contain large number of

attributes or features. Some of these features are irrelevant and/or redundant. High

dimensionality affects the performance of any machine learning technique. And it

is called curse of dimensionality. The most common way to address this issue is

through dimensionality reduction techniques.

Feature selection is one of the widely used dimensionality reduction techniques.

Feature selection is the process of selecting a subset of features according to certain

criteria [13]. It is performed as a preprocessing step, and it improves the mining

performance.

There are two major aspects to be considered when designing a feature selec-

tion method: evaluation and generation (search). From evaluation perspective,

filter-based and wrapper-based approaches are used. Filter-based methods evalu-

ate features independently of any learning algorithm, just relying on characteristics

of data [14] [15]. Examples of filter-based method include Fisher Score [16], and

ANOVA F-value [17]. Wrapper-based methods evaluate features based on a learning

algorithm [18]. Examples of wrapper-based method include the LVW algorithm [19]

and FVBRM [20]. Due to the lack of a learning algorithm, filter methods usually

perform faster than wrapper methods, however, the subset of selected features in

filter methods may not represent the optimal subset for classification [15].

From search perspective, the search for an optimal set of features in a high di-

mensional space is challenging and most of the time it is not practical. Metaheursitc

algorithms are used as a solution to this problem. A metaheuristic algorithm is an

optimization problem suitable for real-world problems, because it searches for an

optimal or near-optimal solution by making some reasonable assumptions on the

problem. Some metaheuristic algorithms were used in IDS, such as the usage of

random mutation hill climbing in [18] and the usage of tabu search in [21].

Many metaheuristic algorithms take a lot of time to converge towards a solution

and they may stuck at a local optima. As a consequence, most researchers prefer

working with two categories of metaheuristic algorithms: evolutionary computation

(EC) algorithms and swarm intelligence (SI). Evolutionary computation (EC) algo-

12

Intrusion Detection System using Feature Ranking and GWO

rithms are based on biological evolution and natural selection techniques. Genetic

algorithm (GA) [22] is a common EC algorithm. Swarm intelligence algorithms,

on the other hand, are inspired from nature phenomena and social behavior of ani-

mals, birds, wolves, etc [23]. Particle Swarm Optimization (PSO) [24], Ant Colony

Optimization (ACO) [25], Firefly Algorithm (FA) [26] are common SI algorithms.

More recently, a promising SI algorithm emerged. This algorithm is call Grey wolf

optimization (GWO) [27].

Grey wolf optimization (GWO) is a swarm intelligence algorithm that imitates the

hunting process of a pack of grey wolves in nature [28]. It has shown faster con-

version than PSO along with a good balance between exploration and exploitation.

This means that it well manages the trade-off between local optima and global op-

tima. To apply GWO in feature selection, Emary et al. [23] developed a binary

version that has been used in several IDSs [29] [30].

1.3 Problem Statement and Motivation

The first challenge in intrusion detection systems is to reduce the number of

features and increase the detection accuracy. We have reviewed in the previous

section feature selection as a solution to this problem. The second challenge is to

have short training time, and a real-time or near real-time prediction.

Although there have been many studies on IDS to address the first challenge, few of

them considered the second challenge. So, there are two main challenges to address

in this study:

1. Reduce the data dimensionality to have short training time, and a real-time

or near real-time detection.

2. Achieve high detection rate, high accuracy, and low false alarm rate at the

same time.

In this study, we propose a hybrid feature selection approach to address these

challenges. A hybrid approach is a two-stage feature selection approach. In the first

stage, a filter method is used to reduce the data dimensionality. The reduced data

is the input to the second stage. In the second stage, a wrapper method is used

13

Intrusion Detection System using Feature Ranking and GWO

to select the optimal feature subset. The benefit of this approach is that it offers

the fast computation of filter methods and the optimization capabilities of wrapper

methods.

In the first stage of the proposed approach, we will use a filter method called Analysis

of Variance (ANOVA) F-value, which is a well-known feature ranking method. In

the second stage, we will use a wrapper method that uses binary GWO (BGWO)

as a search strategy, and a Random Forest classifier for evaluation.

To assist on the performance of the proposed approach, we will consider NSL-

KDD dataset. In the future work, we will consider larger datasets, such as CIC-

IDS-2017 and CSE-CIC-IDS-2018. Moreover, we will compare the performance of

our approach against the performance without the proposed feature selection, and

the performance when GWO is used alone. We will use five common classifiers in

IDS literature: Decision Tree, SVM, KNN, ANN, and Naive Bayes. And finally, we

will consider both multi-class classification (using one-vs-rest strategy) and binary

classification.

Throughout the experiments, we have noticed that Decision Tree and ANN clas-

sifiers are already performing well without feature selection. While, SVM and KNN

are taking long time to do the training and testing. On the other hand, Naive Bayes

is the worst performing classifier.

Using the proposed approach, we have been able to achieve the following:

• Dimensionality reduction of 68% from 41 to 13 features.

• Reduce GWO search time by 18%.

• Improve Naive Bayes overall accuracy in multi-class classification.

• Reduce the training time of KNN by 77% in multi-class classification, and by

59% in binary classification.

• Reduce the testing time of KNN by 93% in multi-class classification, and by

89% in binary classification.

• Reduce the training time of SVM by 62% in multi-class classification, and by

68% in binary classification.

14

Intrusion Detection System using Feature Ranking and GWO

• Reduce the testing time of SVM by 46% in multi-class classification, and by

48% in binary classification.

• Almost preserve the overall accuracy, detection rates and false alarm rates of

the other classifiers. In fact, our numbers were not better than the classifiers

without feature selection, but at least they were around with less time and

less features.

1.4 Thesis Outline

• In Chapter 2, we will present a theoretical background on machine learning,

feature selection and metaheuristic algorithms. Then, we will discuss few

studies that used different machine learning approaches on IDS.

• In Chapter 3, we will discuss each step of our proposed approach along with

mathematical foundations, and explanatory examples.

• In Chapter 4, we will describe the methodology, environment, and tools we

used to setup and implement the experiments. Then, we will illustrate the

evaluation metrics used in multi-class classification and binary classification.

• In Chapter 5, we will present and analyze experiments results, along with

justification on chosen parameters for GWO and ANOVA F-value.

• And finally, we will present conclusion and future work in Chapter 6.

15

Chapter 2

Foundation and Literature Review

In this chapter, we first present a theoretical background on machine learning,

feature selection and metaheuristic algorithms. Then, we present the related work

in intrusion detection systems.

2.1 Theoretical Foundation

Machine learning is a special branch of artificial intelligence that makes a decision

or predicts an output by acquiring knowledge from existing input data. Arthur

Samuel defined machine learning in 1959 as a study that allows computers to learn

knowledge without being programmed. There are three main categories for machine

learning techniques:

1. Supervised Learning: also called Classification. In supervised learning, the in-

put training data is already labeled, or in other terms already classified. Some

of the most popular supervised learning algorithms are: Bayesian Networks,

Decision Trees, Artificial Neural Networks, K Nearest Neighbor, and Support

Vector Machine. We will come to each of those in short.

2. Unsupervised Learning: also called Clustering. Unlike supervised learning,

input training data here is unlabeled. Some of the most popular unsupervised

learning algorithms are: K-means clustering, Apriori algorithm, and Fuzzy

clustering.

3. Semi-supervised Learning: this category makes use of labeled and unlabeled

16

Intrusion Detection System using Feature Ranking and GWO

data. Basically, labeled samples will be used to learn the classes, and unlabeled

samples will be used to find the suitable separation between classes. Graph-

based and heuristic-based algorithms are used in this category.

In this study, we will use the following supervised learning algorithms (classifiers):

A. Support Vector Machine (SVM)

A Support Vector Machine (SVM) [31] is a supervised machine learning algo-

rithm used for classification and regression purposes. The basic idea in SVM

is to find a hyperplane that best divides a dataset into multiple classes.

A hyperplane can be a line as in Figure 2.1 [32], but this is considered a simple

example with only two dimensions that do not overlap. In real applications,

SVM is used with any number of dimensions, and therefore, a hyperplane is

considered a generalization of a plane where it can be a point in one dimension,

a line in two dimensions and a plane in three dimensions [33] [34].

Figure 2.1: Hyperplane example

B. K-Nearest Neighbor (KNN)

K-nearest neighbor (KNN) [35] is a supervised learning algorithm commonly

used for classification. When classifying an instance sample, KNN computes

the minimum distance from that instance to the training sample. Then, the

instance sample is classified based on the majority of the K-nearest neighbor

category [23].

C. Decision Tree

A decision tree is often represented as a flowchart tree where each internal

node represents an attribute, and each branch represents a value or range of

17

Intrusion Detection System using Feature Ranking and GWO

this attribute and each leaf node represents a class label. This is depicted in

Figure 2.2 [36].

Figure 2.2: Decision tree example

D. Naive Bayes

Naive Bayes is based on Bayes’ theorem of posterior probability with the

assumption of class-conditional independence [36]. This means that it assumes

that the impact of an attribute on a class is not affected by the values of other

attributes. Therefore, Naive Bayes is usually used because of its simplicity

and fast computation [37]. However, this may come at the cost of having low

accuracy.

E. Artificial Neural Network (ANN)

The idea of Artificial Neural Network (ANN) came from the human brain [37].

Each node (or neuron) in the network is capable of perception, pattern recog-

nition and any other function. The interconnections between the nodes have

weights. When a pattern is represented to the input layer of the neural net-

work, it passes this pattern based on the weights to another hidden layer for

processing. There can be as many as needed hidden layers. At the end, the

last hidden layer passes its processing results to the output layer, which takes

the classification decision.

This was a general overview on machine learning, its techniques and some of the well-

known supervised algorithms. In the next subsection, we discuss feature selection

which is an important topic when classifying large datasets. In the last subsection,

we discuss metaheuristic algorithms showing their vital role in feature selection.

18

Intrusion Detection System using Feature Ranking and GWO

2.1.1 Feature Selection

Nowadays, data has become essential in every field, and it is increasing dramat-

ically on daily basis. Intrusion detection is no exception. In fact, the recent efforts

made by the Canadian Institute for Cybersecurity1 emphasized the importance of

having large datasets to simulate real-life network traffic. Classifying such volumes

of data accurately and near real-time is a challenging task for machine learning algo-

rithms. Additionally, such data usually have many attributes to analyze. Not only

this causes computation time and space complexities, but it also cause overfitting

problems. This is known in the literature as curse of dimensionality [15].

The most well-known way to address this challenge is to use dimensionality

reduction techniques. These techniques are mainly categorized into: feature ex-

traction and feature selection. In feature extraction, a low dimensional feature

space is constructed either linearly or non-linearly from the original feature space.

Principle Component Analysis (PCA) [38] is the most popular feature extraction

method. There are other methods as well, such as: Independent Component Anal-

ysis (ICA) [39], Linear Discriminant Analysis (LDA) [40], and Locally Linear Em-

bedding (LLE) [41]. In contrast, feature selection removes redundant and irrelevant

features ending up with the subset of relevant features. In real world problems,

feature selection is more preferred than feature extraction because it offers better

readability and interpretability [15].

Feature selection approaches are mainly categorized as: filter approaches, wrapper

approaches, embedded approaches, and hybrid approaches.

2.1.1.1 Filter Approaches

Filter feature selection methods evaluate features without utilizing any classi-

fication algorithms, just relying on the characteristics of the data [42]. Typically,

filter algorithms go through two steps: feature ranking based on certain criteria (e.g.

using statistical-based techniques), and selecting the highest ranked features based

on a certain threshold. In the first step, features are evaluated on either a univari-

ate or a multivariate schemes [15]. In the univariate scheme, each feature is ranked

independently of the feature space, while the multivariate scheme evaluates features
1https://www.unb.ca/cic/

19

Intrusion Detection System using Feature Ranking and GWO

in a batch way. Some of the common filter methods include: Fisher Score [16],

ReliefF [43], ANOVA F-value [17], Chi-square [44], and Gini Index [45].

Apparently, filter methods are computationally fast. However, they do not guarantee

selecting the optimal or near-optimal subset of features that maximizes classification

performance.

2.1.1.2 Wrapper Approaches

In contrary to filter methods, wrapper methods depend on a learning algorithm

to evaluate the quality of the selected features [15]. There are two main concepts

in any wrapper algorithm: search strategy and evaluation criteria. To clarify, any

wrapper algorithm works iteratively where it first searches for a subset of features,

then it evaluates the performance of this subset to check if it meets the needed qual-

ity. If not, the iteration continues until either finding the optimal subset or reaching

a maximum iteration. Search strategies in typical wrapper methods often follows ei-

ther a recursive feature elimination scheme or a sequential feature selection scheme.

Common wrapper methods in IDS are: Feature Vitality Based Reduction Method

(FVBRM) [20], Sequential Forward Selection (SFS), Best First Search (BFS) and

Consistency Subset Eval (CSE).

Even though wrapper methods achieve better classification performance than fil-

ter method, they still suffer from high computation, overfitting and large search

spaces [42].

2.1.1.3 Embedded Approaches

On the one hand, filter methods do not incorporate learning. On the other hand,

wrapper methods suffer from high computation and large search spaces. Therefore,

Embedded methods offer a trade-off solution between filter methods and wrapper

methods [15]. Embedded methods are similar to wrapper methods, except that

they consider feature selection within the learning algorithm. In other words, these

methods do not search iteratively for the best subset. Rather, they evaluate the

importance of each feature to the prediction process. Most widely used embedded

methods are regularization-based, such as LASSO regression [46], and tree-based

such as decision trees.

20

Intrusion Detection System using Feature Ranking and GWO

2.1.1.4 Hybrid Approaches

Hybrid approaches are two-stage feature selection methods [42]. In the first

stage, a filter method is applied to select a subset of features. In the second stage,

a wrapper method is used to select the optimal subset of features from the first

subset. The main benefit of these approaches is that they take advantage of the

fast computation of filter methods to reduce the search space of wrapper methods.

Consequently, wrapper methods become faster and they do not overfit. In this study,

we are adopting this approach as will be explained in Chapter 3.

2.1.2 Metaheursitc Algorithms

Selecting the subset of features that maximizes classification performance can

be seen as an optimization problem. But since we are dealing with this problem in

intrusion detection context, which is a real-world context, there are few challenges

to take into consideration. First, it is usual to have insufficient or imperfect infor-

mation. Second, it can be computationally expensive to reach the exact optimal

solution.

Taking these challenges into consideration, it is recommended to use what is

called metaheurisitc algorithms for such problems [42]. In simple terms, heuristic

means to find or discover by trial-and-error. This means that metaheuristic is a

higher-level heursitic that guides other heuristics to reach solutions beyond the local

optimum [47].

Compared to other optimization algorithms, metaheuristic algorithms are suitable

for real-world problems, because they tend to simplify calculations by making rea-

sonable assumptions on the optimization problem [42]. The idea is to find a math-

ematical model that represents the problem. Then, the search for the best solution

starts by proposing an initial solution out of the mathematical model. After that,

the search process is guided by the information collected during the search itself.

This continues until a near-optimal solution is reached.

There are two important components that any metaheuristic algorithm must take

care of [48]:

• Exploration: it is called also diversification. It means to search for different

21

Intrusion Detection System using Feature Ranking and GWO

solutions in the search space at a global scale.

• Exploitation: it is called also intensification. It means that a good solution

is found in the current local region, so the search should be focused in this

region.

A good metaheuristic algorithm tries to balance between exploration and exploita-

tion so that it converges fast to the optimal solution. That is why most metaheuristic

algorithms are stochastic in nature, which means they use some randomness to make

a trade-off between global optima and local optima [49].

Metaheuristic algorithms can be categorized into: single-based metaheuristic and

population-based metaheuristic [42]. In the following subsections, we briefly discuss

these categories, and we present some of the common metaheuristic algorithms used

in feature selection.

2.1.2.1 Single-based Metaheuristic Algorithms

These algorithms are also called trajectory algorithms. The reason behind this

is that they create an initial solution, and then they follow a specific path in the

search process to investigate neighboring regions [42]. The aim of these algorithms

is to reach a local optima. Simulated Annealing (SA) [50] and Tabu Search (TS) [51]

are two common examples of this algorithm.

2.1.2.2 Population-based Metaheuristic Algorithms

Compared to single-based algorithms, these algorithms initialize a set of solutions

(population), and then they search for better population. This continues until a

search criteria is reached [42]. Most of the algorithms in this category fall into either

Evolutionary Computation (EC) algorithms or Swarm Intelligence (SI) algorithms.

Evolutionary Computation (EC) is a form of Computation Intelligence (CI) that

is inspired by biological evolution and natural selection techniques [52]. These algo-

rithms start by a randomly generated population. Then, evolution operations such

as mutation are used to evolve the population. Genetic Algorithm (GA) [22] and

Differential Evolution (DE) [53] are two common evolutionary algorithms.

Swarm Intelligence (SI) is also a form of CI which simulates and imitates the nat-

ural swarms or communities, such as bird swarms and fish schools. These algorithms

22

Intrusion Detection System using Feature Ranking and GWO

focus on finding mathematical formulas to model the behavior of swarm’s mem-

bers and their interactions to find food sources [3]. There are many SI algorithms,

such as: Particle Swarm Optimization (PSO) [24], Firefly Algorithm (FA) [26], Ant

Colony Optimization (ACO) [25], Artificial Bee Colony (ABC) [54], and Grey Wolf

Optimizer (GWO) [27].

In this study, we are mainly adopting Grey Wolf Optimizer (GWO) algorithm

which will serve as the search strategy of the hybrid approach proposed in Chapter 3.

GWO is a swarm intelligence algorithm developed by Mirjalili et al. [27]. It mimics

the hunting process of a pack of grey wolves in nature. A binary version of GWO

was developed by Emary et al. [23] to find optimal regions of complex search spaces

which makes it useful for feature selection. The binary version of GWO showed

faster convergence speed and higher classification accuracy than other population-

based algorithms, such as GA and PSO. Furthermore, GWO achieves a good balance

between exploration and exploitation as will be shown mathematically in Section 3.6.

2.2 Related Work

Many network attacks and abnormal behaviors have been introduced in recent

years. As a result, traditional ways for intrusion detection were not able to cope with

the speed of network advancements. For example, deep packet inspection (DPI) is

considered a traditional way that uses a rule-based technique for intrusion detection.

A DPI solution usually captures and decapsulates all packets passing through the

network. Then, it applies certain rules stored in the database to the packet in

order to identify anomalies. Applying such rules fails to understand several attack

behaviors in modern network environments [4].

As a consequence, researchers in the last two decades considered intrusion de-

tection as a classification problem [3]. Since then, there have been an ongoing effort

to create datasets simulated from real network traffic to capture the evolving at-

tacks. Table 2.1 lists most common IDS datasets [1]. In the scope of this study, we

consider only NSL-KDD dataset (analyzed in Section 3.2), and in the future we will

be considering more recent and more realistic datasets such as CIC-IDS-2017 and

CSE-CIC-IDS-2018.

23

Intrusion Detection System using Feature Ranking and GWO

Table 2.1: IDS Datasets created from real network traffic

Dataset Name Created by Year
Number of

Features

DARPA [55] MIT Lincoln Laboratory 1998 41

KDDCUP’99 [56] University of California 1999 41

NSL-KDD [10] University of California 2009 41

Kyoto [57] Kyoto University 2011 24

ISCX-IDS-2012 [11] University of New Brunswick 2012 IP flows

CIC-IDS-2017 [12]
Canadian Institute

of Cyber Security
2017 80

CSE-CIC-IDS-2018 [12]
Canadian Institute

of Cyber Security
2018 80

Alongside this advancement in IDS datasets, there have been many studies ap-

plying different machine learning approaches to IDS problems. Figure 2.3 presents

most of these approaches according to latest surveys [58] [59] [60] [42].

The main motivation to use machine learning and data mining techniques is

that they detect known and unknown attacks in the network. One way to de-

tect unknown attacks is throw unsupervised and semi-supervised learning algo-

rithms [7] [61] [62] [63]. Nonetheless, supervised learning algorithms are still more

dominant in the field of intrusion detection. This is mainly because they are easier

to compare and to build on top of them.

ANN and SVM are the most used supervised learning algorithms for intrusion

detection [37] [59]. Saied et al. [64] used ANN to detect unknown distributed denial-

of-service (DDoS) attack, and they were able to detect 100% of the known attacks

and 95% of the unknown attacks. Yin et al. [65] used also recurrent neural networks

(RNN) to detect attacks. They achieved about 99% detection rate for known attacks

and more than 68% for the unknown attacks using NSL-KDD dataset. Another

study [66] proposed a hybrid of multilayer perceptron (MLP) neural network and

radial basis function (RBF) neural network to improve prediction accuracy in IDS.

Even though these classifiers perform well, they still suffer computationally from high

dimensional data. Therefore, Yi et al. [67] suggested a new kernel function U-RBF to

24

Intrusion Detection System using Feature Ranking and GWO

Figure 2.3: Machine Learning Algorithms in Anomaly-based IDS

SVM to reduce its computation complexity while achieving similar performance on

KDDCUP’99 dataset. Koc et al. [68] proposed another idea which is to use Bayesian

network classifiers as they are known to be simpler and faster. They showed that

Hidden Naïve Bayes (HNB) performed better than SVM in detecting DoS attacks.

Nevertheless, many researchers pointed out that dimensionality reduction is vital

to achieve good performance in terms of high accuracy, low false positive rate and

efficient computation. For example, Vasan and Surendiran [8] did experiments on

KDDCUP’99 and UNB ISCX datasets using Principal Component Analysis (PCA),

and obtained 10 principal components to achieve similar accuracy to 41 features

used by C4.5 classifier.

Among dimensionality reduction techniques, feature selection is the most popular

25

Intrusion Detection System using Feature Ranking and GWO

technique. A recent systematic review [60] showed that feature selection has been

broadly adopted in the last decade. Moreover, wrapper-based methods and hybrid

methods are being used more than filter-based methods. This is because wrapper-

based methods and hybrid methods search for the optimal or near-optimal subset

of features. Since we are looking for optimal solutions, most wrapper-methods use

metaheurisitc algorithms as a search strategy technique.

Metaheuristic algorithms aim to find the optimal or near-optimal solution to a

problem. As explained in Section 2.1, these algorithms are divided into: single-based

and population-based. In literature [42], population-based metaheuristic algorithms

are more commonly used for intrusion detection compared to single-based meta-

heuristic algorithms. Among population-based methods, Evolutionary Computation

(EC) and Swarm Intelligence are the most common methods.

As an example on single-based metaheuristic, Li et al. [18] proposed a modified

version of random mutation hill climbing (RMHL) as a search strategy and Linear

SVM for evaluation to find the optimal feature subset per each attack category of

KDDCUP’99 dataset. The modified version of RMHL speeds up its convergence

and its dimensionality reduction ability. They performed the experiments on five

samples each representing an attack category of KDDCUP’99.

To assist on the effectiveness of feature selection, the authors chose to compare

building and testing time, and ROC score of selected features against all features.

The results showed that the selected features improves the speed of the algorithm

while achieving higher ROC score.

When working with population-based metaheuristic algorithms, the researchers

focus on effectively reducing the search space of such algorithms. This is usually

achieved by applying a filter-based method in prior of wrapper-based methods. For

example, Mohammadi et al. [69] focused on the importance of feature selection to

reduce false positive rate and to reduce the search space for large datasets such

as KDDCUP’99. First, they applied a filter-based method called feature grouping

based on linear correlation coefficient (FGLCC) to select the best features that

have maximum correlation with the class and minimum relation with other selected

features. Then, they applied a wrapper-based method that uses cuttlefish algorithm

(CFA) as a search strategy and decision tree classifier for the fitness function.

26

Intrusion Detection System using Feature Ranking and GWO

The proposed approach only considered binary classification, and its performance

was evaluated on 10% of KDDCUP’99 dataset. The results showed good accuracy

and low false positive rate.

Similarly, Selvakumar and Muneeswaran [5] used filter and wrapper methods

to reduce the dimensionality of KDDCUP’99 dataset. First, they used the mutual

information as a filter method to select the first subset of features. Then, they used

a metaheuristic technique called Mutual Information Firefly Algorithm (MIFA) to

select two subsets of features, the first subset is selected using C4.5 classifier, and

the second subset is selected using Baysian network. The final subset of features is

constructed using a voting technique, where each feature is selected if and only if it

exists at minimum in two subsets. Finally, C4.5 and Baysian network are used for

classification after feature selection.

They [5] ran the experiments using 10 fireflies and a maximum of 100 iteration.

They were able to prove that 10 features (out of 41) are sufficient to improve the

training and testing time, the detection rate and the false positive rate.

Regular metaheuristic algorithms suffer from the computation time needed to

choose optimal subset and from local optima problem. This is where Evolutionary

Computation (EC) and Swarm Intelligence (SI) algorithms come into play. EC and

SI algorithms offer similar benefits except that SI algorithms are nature-inspired

and tend to converge faster. Now, we will go through some of the recent studies

applying EC or SI algorithms in IDS.

Hajimirzaei and Navimipour [70] classified IDS in cloud computing as an NP-

Hard problem. Therefore, they suggested to use metaheuristic algorithms and evo-

lutionary methods to solve it. They first used Fuzzy C-Means clustering (FCM) to

improve the training speed. Then, they used a multilayer ANN with back propa-

gation for the classification. Moreover, they applied ABC to optimize the linkage

weights and biases of the nodes in the training stage.

The experiments were performed on NSL-KDD dataset. The proposed method out-

performed similar state-of-the-art methods by achieving lower mean absolute error

(MAE) and root mean square error (RMSE) values.

On the other hand, Aburomman and Reaz [71] achieved an accuracy of 92% on

KDDCUP’99 dataset by applying particle swarm optimizer (PSO) to the output of

27

Intrusion Detection System using Feature Ranking and GWO

an ensemble of classifiers.

Moreover, Bamakan et al. [3] adopted an enhanced version of PSO called time-

varying chaos PSO (TVCPSO) to select the most important features, and to fine

tune the parameters SVM and Multiple Criteria Linear Programming (MCLP) clas-

sifiers. The authors emphasized that three main factors impact the efficiency of

any intrusion detection system: feature selection, high detection rate, and low false

alarm rate. Therefore, they proposed a weighted objective function that takes these

three factors into consideration.

NSL-KDD dataset was considered in the experiments. They ran the experiments for

10 iterations, in each iteration 10-fold cross-validation was used, and then the aver-

age measures were taken. They proved that feature selection increases the detection

rate of their proposed methods. Moreover, they achieved comparable accuracy and

false alarm rate to similar methodologies.

More recently, Hajisalem and Babaie [6] used Swarm Intelligence techniques to

improve the classification accuracy on NSL-KDD and UNSW-NB15 datasets. To

decrease complexity and increase efficiency, they first used Fuzzy C-Means cluster-

ing (FCM) to divide the training data into smaller subsets. Then, they applied

Correlation-based Feature Selection (CFS) on each subset, which resulted in se-

lecting six features from NSL-KDD and six features in UNSW-NB15. Then, they

used Classification and Regression Tree (CART) to generate effective rules set. For

example, the authors found that when logged_in feature has the value ’0’, this

demonstrates a normal behavior. During this step, the authors used also the idea

of dividing normal behaviors into K ranges which was already proposed in [72] to

reduce processing time. Finally, they applied a hybrid classifier based on Artificial

Bee Colony (ABC) and Artificial Fish Swarm (AFS).

The experiments were performed on random samples from NSL-KDD and UNSW-

NB15 datasets. The authors [6] were able to achieve an accuracy ranging from 96.7%

to 99% and FPR ranging from 0.82% to 0.01% in NSL-KDD, and an accuracy rang-

ing from 95% to 98.9% and FPR ranging from 2.1% to 0.13% in UNSW-NB15.

Even though GWO is still a new SI algorithm, it is taking more attention in

IDS recent studies. For example, Seth and Chandra [29] used GWO to reduce the

number of attributes in NSL-KDD. They started by applying a probability density

28

Intrusion Detection System using Feature Ranking and GWO

function on nominal attributes to transform them into numerical attributes. Then,

they applied a binary version of GWO [23] with a population size of 12 to reduce

the NSL-KDD attributes. They were able to select 24 attributes out of 41. Finally,

they used neural network as a classifier.

The experiments were performed with different number of neurons, and a size of 70%,

15%, and 15% for the training, testing and validation respectively. Throughout 300

iterations, a maximum accuracy of 99.5% was achieved.

Going further, Devi and Suganthe [30] applied a multi-objective GWO technique

for attribute reduction. This technique runs in two stages to combine the efficiency of

filter-based methods and the effectiveness of wrapper-based methods. The first stage

searches for the attribute combination that maximizes the mutual information. The

solution resulted from the first stage is used as an initial population to the second

stage. In the second stage, the feature set that maximizes the correct classification

ratio (CCR) is selected. A combination of SVM and Naive Bayes classifiers is used

to improve the accuracy. Moreover, the factor that controls the exploitation and

exploration of GWO is kept in this stage between 0 and 1 to fine tune the solutions

around the initial population.

The proposed technique was experimented on NSL-KDD dataset, where it reduced

the features from 41 to 18, and achieved good accuracy and false positive rates in a

reasonable execution time.

2.3 Summary

In this chapter, we first presented a theoretical background on machine learning,

feature selection, and metaheuristic algorithms. We also talked briefly about five

common classifiers: SVM, KNN, ANN, Decision Tree, and Naive Bayes.

Regarding feature selection, there are four known approaches: filter approaches,

wrapper approaches, embedded approaches, and hybrid approaches. Filter ap-

proaches are known for their fast computation, while wrapper approaches are known

for their optimization capabilities. Embedded approaches are similar to wrapper ap-

proaches except that they try to employ feature selection in the learning process,

and thus, they are faster. On the other hand, hybrid approaches are two-stage fea-

29

Intrusion Detection System using Feature Ranking and GWO

ture selection approaches, in which the first stage uses a filter method to reduce the

data, and the second stage uses a wrapper method that takes the reduced data as

input.

Metaheuristic algorithms are optimization algorithms that can be used to search

for the optimal or near-optimal subset of features. There are two main cate-

gories of metaheursitic algorithms: single-based or trajectory-based algorithms, and

population-based algorithms. The main differences between single-based algorithms

and population-based algorithms are:

1. Single-based algorithms use one solution while population-based algorithms

use a set of solutions.

2. Single-based algorithms look for the local optima, while population-based al-

gorithms make a trade-off between local optima and global optima.

There are two major categories of population-based algorithms: Evolutionary Com-

putation (EC) algorithms and Swarm Intelligence algorithms (SI).

After this theoretical foundation, we reviewed different machine learning algo-

rithms used in IDS. It is noticed that in the last decade, there is an increase in the

research studies that consider SI algorithms in their intrusion detection systems.

GWO is among these SI algorithms.

30

Chapter 3

Hybrid Feature Selection using

Feature Ranking and GWO

As stated in Section 2.1.1, high dimensionality is a challenge that any IDS must

overcome to achieve real-time prediction. Therefore, many researchers emphasized

the importance and effectiveness of using a dimensionality reduction technique in

IDSs [3] [73] [74].

Consequently, we decided to use one of the most efficient dimensionality reduction

techniques, which is feature selection. Feature selection is performed in the pre-

processing step. Its main objective is to select the features set that will not only

decrease classifier training time and prediction time, but will also achieve similar or

even better prediction.

In this chapter, we present a hybrid feature selection approach applied on NSL-KDD

dataset. The fist stage of the feature selection is filter-based using Analysis of Vari-

ance (ANOVA) F-value for feature ranking, and the second stage is wrapper-based

using Binary Grey Wolf Optimizer (BGWO) as a search strategy and Random For-

est for fitness function.

We first present an overview of the approach. Then, we present an overview on

NSL-KDD dataset. Then, the next sections go through each step of the approach.

3.1 Overview

As shown in Figure 3.1, there are three main steps:

31

Intrusion Detection System using Feature Ranking and GWO

1. Splitting dataset into training and testing sets: a random seed is used to

shuffle the data and split it into 70% training and 30% testing sets. Stratified

sampling is use in this step, such that the distribution of each class in the

complete dataset is preserved in the training and testing sets.

Figure 3.1: Proposed approach flowchart

32

Intrusion Detection System using Feature Ranking and GWO

2. Preprocessing: this is the main step in the proposed approach. Feature ranking

(a filter-based method) is used to reduce the dataset by selecting a percentage

of the top ranked features. Then, a wrapper-based method with BGWO as a

search strategy is applied on the reduced dataset to select the optimal features

subset.

3. Classification: different classifiers are applied on the reduced dataset. And

both multi-class classification and binary classification are evaluated.

3.2 NSL-KDD

3.2.1 Overview

NSL-KDD dataset [10] is one of the most effective datasets in the domain of

intrusion detection. It is a modified version of KDDCUP’99 dataset [56], which was

created in 1999. KDDCUP’99 is constructed from simulated TCP connections in

a military network environment [3]. KDDCUP’99 had been the most widely used

dataset to evaluate IDSs until recent years [60]. However, researchers found some

deficiencies that make it less reliable [10]:

1. Redundant records: this mainly affects the performance of any classifier such

that it is biased towards more frequent records.

2. Low difficulty level: applying simple machine learning methods will give at

least 86% accuracy, which makes it difficult to compare the different models

as they will fall in the range of 86% to 100%.

To deal with these deficiencies, the following improvements were applied to NSL-

KDD [10]:

1. Removing all redundant records from train and test sets so that there will be

no biasing.

2. Better sampling and distribution for the records which will increase the clas-

sification challenge.

3. Reasonable number of records in train and test sets. This makes it affordable

to run experiments on the whole dataset without any need for sampling.

33

Intrusion Detection System using Feature Ranking and GWO

NSL-KDD still does not perfectly represent real networks. Nonetheless, it is still a

reliable benchmark dataset to compare intrusion detection methods.

3.2.2 Description

NSL-KDD records are labelled as normal or attack. There are 39 different attacks

distributed (with some overlap) as 22 attacks in the training set and 37 attacks in

the testing set. These attacks fall into four basic categories detailed as follows:

• Denial of Service Attack (DoS): involves attacks which try to keep the ma-

chine’s memory or computing resources too busy such that the machine cannot

serve its legitimate users.

• User to Root Attack (U2R): involves attacks in which the attacker first gains

access to a normal user account, and then tries to exploit some vulnerability

to gain root access to the system.

• Remote to Local Attack (R2L): involves attacks in which attacker keeps send-

ing packets to a machine over some network. The main purpose in these

attacks is to try to find a system vulnerability to gain access as a normal user.

• Probing Attack: these attacks scan the computer networks to find some vul-

nerability in its security controls.

Table 3.1 shows the detailed distribution of the different attacks.

Table 3.1: NSL-KDD Attack Distribution

Attack Category Attacks Included

DoS neptune, back, land, pod, smurf, teardrop, mailbomb,

apache2, processtable, udpstorm, worm

Probing ipsweep, nmap, portsweep, satan, mscan, saint

R2L ftp_write, guess_passwd, imap, multihop, phf, spy, warez-

client, warezmaster, sendmail, named, snmpgetattack, sn-

mpguess, xlock, xsnoop, httptunnel

U2R buffer_overflow, loadmodule, perl, rootkit, ps, sqlattack,

xterm

34

Intrusion Detection System using Feature Ranking and GWO

Moreover, NSL-KDD is constructed from 41 attributes or features. These fea-

tures fall into three main categories as shown in Table 3.2:

1. Basic features: these attributes are extracted from a TCP/IP connection.

2. Content features: these attributes are extracted from the data portion of the

packet. They are very important to detect R2L and U2R attacks. This is

because these attacks usually involve a single connection.

3. Traffic features:

(a) Time-based traffic features: these attributes are extracted from connec-

tions in the past two seconds that have the same destination or same

service as current connection.

(b) Connection-based traffic features: these attributes are extracted from last

100 connections that has the same destination or same service as current

connection. Extracting such attributes contributes more in detecting

probing attacks.

35

Intrusion Detection System using Feature Ranking and GWO

Table 3.2: NSL-KDD Features

Type Features Range/Values

Basic

features

duration 0 - 57715

protocol_type tcp, udp, icmp

service http, private, domain_u, smtp,

ftp_data, other, eco_i, telnet,

ecr_i, ftp, finger, pop_3, auth,

imap4, Z39_50, uucp, courier,

bgp, iso_tsap, uucp_path, whois,

time, nnsp, vmnet, urp_i, do-

main, ctf, csnet_ns, supdup,

http_443, discard, gopher, day-

time, sunrpc, efs, link, sy-

stat, exec, name, hostnames,

mtp, echo, login, klogin, net-

bios_dgm, ldap, netstat, net-

bios_ns, netbios_ssn, ssh, kshell,

nntp, sql_net, IRC, ntp_u, rje,

remote_job, pop_2, X11, shell,

printer, pm_dump, tim_i, urh_i,

red_i, tftp_u, http_8001, aol,

harvest, http_2784

flag SF, S0, REJ, RSTR, RSTO, S1,

SH, S3, S2, RSTOS0, OTH

src_bytes 0 - 1379963888

dst_bytes 0 - 1309937401

land 0, 1

wrong_fragment 0 - 3

urgent 0 - 3

Content

features

hot 0 - 101

num_failed_logins 0 - 5

logged_in 0, 1

36

Intrusion Detection System using Feature Ranking and GWO

Continuation of Table 3.2

Type Features Range/Values

num_compromised 0 - 7479

root_shell 0 - 1

su_attempted 0 - 2

num_root 0 - 7468

num_file_creations 0 - 100

num_shells 0 - 5

num_access_files 0 - 9

num_outbound_cmds 0

is_host_login 0, 1

is_guest_login 0, 1

Time-based

traffic features

count 0 - 511

srv_count 0 - 511

serror_rate 0 - 1

srv_serror_rate 0 - 1

rerror_rate 0 - 1

srv_rerror_rate 0 - 1

same_srv_rate 0 - 1

diff_srv_rate 0 - 1

srv_diff_host_rate 0 - 1

Connection-based

traffic features

dst_host_count 0 - 255

dst_host_srv_count 0 - 255

dst_host_same_srv_rate 0 - 1

dst_host_diff_srv_rate 0 - 1

dst_host_same_src_port_rate 0 - 1

dst_host_srv_diff_host_rate 0 - 1

dst_host_serror_rate 0 - 1

dst_host_srv_serror_rate 0 - 1

dst_host_rerror_rate 0 - 1

dst_host_srv_rerror_rate 0 - 1

37

Intrusion Detection System using Feature Ranking and GWO

3.3 Nominal Features Transformation using

Probability Density Function (PDF)

Feature ranking and many classification algorithms are mathematical-based.

Therefore, it is important to transform the nominal features of a dataset into their

numerical representation. NSL-KDD dataset has three nominal features (as stated

in Table 3.2): protocol_type, service, and flag.

To avoid biasing the data, we did not encode the data with a static value map

(e.g. http takes 1, smtp takes 2, and so on). Rather, we applied probability density

function as in Eq. (3.1) [29] such that the most frequent nominal value in a column

takes the highest numerical value while still being bounded between 0 and 1. This

range goes along with the numerical features normalization (as explained in the next

section).

PDF (x) =
occur(x)

n
(3.1)

where occur(x) is the number of occurrences of value x within a column, and n is

the total number of records.

3.4 Numerical Features Normalization

using Min-Max

Another important step before working with feature ranking and classification

algorithms is to normalize numeric features. Normalizing a feature means to scale

its values to fall into a smaller range [36].

For example, there are features in NSL-KDD dataset that have wide range of values,

such as: duration, src_bytes and num_root. While there are other features that have

smaller range of values, such as: num_failed_logins, is_host_login, and srv_count.

Keeping the features without normalization may cause biasing towards selecting

wide range features which may also affect classification performance.

To prevent this dominance, we chose to scale all the numeric features to fall in the

range of [0, 1] using min-max normalization. Min-max scaling is shown in Eq. (3.2),

where x is the value to be scaled in feature X, MinMax(x) is the scaled value of

x, Min(X) and Max(X) are the minimum and maximum values respectively in

38

Intrusion Detection System using Feature Ranking and GWO

feature X, min and max are the boundaries of the new range.

MinMax(x) = min+ (max−min)(
x−Min(X)

Max(X)−Min(X)
) (3.2)

3.5 Feature Ranking using ANOVA F-value

Feature ranking is a filter-based method that measures how significant a feature

impacts the target class [75]. As indicated in Section 2.1, filter-based methods are

usually statistical-based offering fast computation. However, they do not offer the

ability to select the optimal subset of features. Therefore, we will use feature ranking

to select a percentage1 of the top ranked features to reduce the data dimension before

passing it to a wrapper-based method that uses GWO as a search strategy. On the

one hand, wrapper-based methods search for the optimal subset of features. On the

other hand, they suffer from large search spaces which might take long time without

giving the optimal subset. Therefore, this hybrid approach combines the best of

both filter-based and wrapper-based methods.

One of the common statistical tests for feature ranking is Analysis of Variance

(ANOVA). ANOVA uses F-value (or F-ratio) to measure whether the means of

three or more groups are equal or not [76]. This is represented by its null hypoth-

esis: H0 : µ1 = µ2 = µ3 and its alternative hypothesis: H1 : µ1 ̸= µ2 ̸= µ3. If the

null hypothesis is true, F-value is expected to be close to 1.

When applying ANOVA in univariate feature ranking, a method called one-way

ANOVA is used. In this method, the F-value of each feature is independently com-

puted, and the feature with the highest F-value is the top ranked feature. In other

words, the top ranked feature has the most impact on the target class (i.e. groups).

To better understand the F-value calculation, we will go through an example on

NSL-KDD dataset.

In NSL-KDD dataset, each record is classified to one of five groups: Normal (no

attack), DoS attack, Probing attack, R2L attack, and U2R attack. Assuming we are

calculating the F-value of service and flag, and we have 31 records as in Table 3.3.

Then, we have the following variables:

• k = number of groups which is 5
1discussed alongside in section 5.2

39

Intrusion Detection System using Feature Ranking and GWO

• N = number of records which is 31

• Nnormal, Ndos, Nprobing, Nr2l, Nu2r = the number of records in each group which

is: 9, 7, 6, 6 and 3 respectively.

Table 3.3: NSL-KDD ANOVA Example

Service Flag Category

21 2 Normal

32 10 Normal

39 60 Normal

45 60 Normal

57 60 Normal

52 60 Normal

48 60 Normal

33 60 Normal

32 60 Normal

11 25 DoS

14 60 DoS

13 10 DoS

19 10 DoS

22 25 DoS

25 10 DoS

30 25 DoS

3 60 Probing

7 60 Probing

4 60 Probing

9 10 Probing

5 2 Probing

6 10 Probing

5 60 R2L

3 2 R2L

2 60 R2L

3 60 R2L

40

Intrusion Detection System using Feature Ranking and GWO

Continuation of Table 3.3

Service Flag Category

4 10 R2L

8 60 R2L

3 2 U2R

3 60 U2R

2 60 U2R

The F-value of a variable X is the ratio of the variance between groups to the

variance within groups [77]. This is represented in Eq. (3.3) where MSbg is the

mean squares between groups, and MSwg is the mean squares within groups.

F =
MSbg

MSwg

(3.3)

A mean squares is the weighted sum of square deviates divided to a degree of free-

dom. The degree of freedom is decided based on the context of the calculation. So,

the degree of freedom of MSbg (annotated dfbg) is k − 1, and the degree of freedom

of MSwg (annotated dfwg) is N − k as explained in Eq. (3.4). dfbg is called nu-

merator degree of freedom, and dfwg is called denominator degree of freedom, and

they are both used to draw the F-distribution F (df1, df2). Figure 3.2 shows the

F-distribution for df1 of 4 and df2 of 26 as in our example.

dfwg = dfnormal + dfdos + dfprobing + dfr2l + dfu2r

= (Nnormal − 1) + (Ndos − 1) + (Nprobing − 1) + (Nr2l − 1) + (Nu2r − 1)

= N − k

(3.4)

The weighted sum of square deviates between groups SSbg and within groups SSwg

are given by Eq. (3.5) and Eq. (3.6):

SSbg =
k∑

j=1

nj(X̄j − X̄)2 (3.5)

SSwg =
k∑

j=1

∑
(X − X̄j)

2 (3.6)

where:

• nj = number of records in jth group

41

Intrusion Detection System using Feature Ranking and GWO

Figure 3.2: F-Distribution F(4, 26)

• X̄j = sample mean of jth group

• X̄ = overall sample mean

Based on the above equations, we will use the following table to calculate F-value:

Table 3.4: F-value calculation template

Source of

Variation

Sums of

Squares

(SS)

Degrees of

Freedom

(df)

Mean

Squares

(MS)

F

Between

Groups

SSbg k − 1 MSbg F =
MSbg

MSwg

Within

Groups

SSwg N − k MSwg

Correspondingly, Tables 3.5 and 3.6 show the F-value for service and flag fea-

tures, respectively. Obviously, the F-value of service is much higher than the F-value

42

Intrusion Detection System using Feature Ranking and GWO

of flag in this example. This means that service has more impact than flag on the

target class.

Table 3.5: F-value calculation for service feature

Source of

Variation

Sums of

Squares

(SS)

Degrees of

Freedom

(df)

Mean

Squares

(MS)

F

Between

Groups

SSbg =

7087.2916

k − 1 = 4 MSbg =

1771.8229

F = 32.94

Within

Groups

SSwg =

1398.5794

N − k = 26 MSwg =

53.7915

Table 3.6: F-value calculation for flag feature

Source of

Variation

Sums of

Squares

(SS)

Degrees of

Freedom

(df)

Mean

Squares

(MS)

F

Between

Groups

SSbg =

2586.4793

k − 1 = 4 MSbg =

646.6198

F = 1

Within

Groups

SSwg =

16819.7143

N − k = 26 MSwg =

646.9121

3.6 Feature Selection using BGWO

After applying feature ranking and selecting a percentage of the top ranked

features, we will search for the optimal subset of features using a wrapper-based

method that uses Grey Wolf Optimizer (GWO) [27] as a search strategy and Random

Forest classifier2 for the fitness function.

GWO is inspired from the social intelligence of grey wolf packs in leadership and

hunting [28]. Grey wolves prefer to live in a pack with an average size between 5

and 12. Within a grey wolf pack, there is a social dominant hierarchy that consists

of the following wolves [28] [23]:
2KNN classifier is proposed in the original algorithm, but we found that Random Forest is much

faster and more accurate

43

Intrusion Detection System using Feature Ranking and GWO

1. Alpha wolves: these wolves are leading the pack in hunting, migration, feeding

and decision making. Their decisions are dictated to the pack.

2. Beta wolves: these wolves are subordinate wolves that help the alpha in deci-

sion making or other activities.

3. Delta wolves: these wolves submit to alphas and betas.

4. Omega wolves: these wolves play the role of scape goat. They are the last

wolves that are allowed to eat.

Mathematically, GWO tries to model the steps followed by the grey wolf pack in

hunting a prey. These steps are [28]: chasing, encircling, harassing and attacking.

Therefore, the fittest solution is called alpha α, the second solution is beta β and

the third solution is delta δ. Other solutions are assumed to be omega ω.

Encircling behavior is modeled by Eq. (3.7):

X⃗(t+ 1) = X⃗(t)− A⃗.D⃗ (3.7)

where X⃗(t + 1) is the next positions of a wolf, X⃗(t) is current position, A⃗ is a

coefficient matrix and D⃗ is a vector that depends on the location of the prey X⃗p(t)

as shown in this equation:

D⃗ = |C⃗.X⃗p(t)− X⃗(t)| (3.8)

where C⃗ = 2.r⃗2 and r⃗2 is a random vector in the range [0,1].

Eq. (3.7) can be simplified by making assumptions on the hunting behavior. The

hunt is usually guided by alpha wolves. Beta and delta wolves have lower partic-

ipation. These wolves are assumed to have better knowledge about the potential

location of the prey. Therefore, their positions are considered the best three search

agents, and other search agents (representing other wolves’ positions) are obliged to

update their positions based on these three best agents [23]. This can be simulated

as in Eq. (3.9).

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
(3.9)

where X⃗1, X⃗2, X⃗3 are defined as in Eqs. (3.10) - (3.12), respectively.

X⃗1 = |X⃗α − A⃗1.D⃗α| (3.10)

44

Intrusion Detection System using Feature Ranking and GWO

X⃗2 = |X⃗β − A⃗2.D⃗β| (3.11)

X⃗3 = |X⃗δ − A⃗3.D⃗δ| (3.12)

where X⃗α, X⃗β, X⃗δ are the positions of α, β, δ at a given iteration t respectively.

A⃗1, A⃗2, A⃗3 are defined as in Eq. (3.13), and D⃗α, D⃗β, D⃗δ are vectors that depend on

current positions and X⃗α, X⃗β, X⃗δ and a random vector r2 in the range [0, 1].

A⃗ = 2a⃗.r⃗1 − a⃗[28] (3.13)

In Eq. (3.13), r⃗1 is a random vector in the range [0,1], and vector a⃗ is linearly

decreased from 2 to 0 over the course of iterations as shown in Eq. (3.14):

a = 2− t
2

MaxIter
(3.14)

where t is the iteration number and MaxIter is the total number of iterations

allowed for the optimization.

From the mathematical model of GWO, it can be seen that GWO tries to make a

balance between exploration and exploitation, which are two conflicting metrics [28].

Exploration is mainly controlled using C⃗ vector, which is always in the range of

[0, 2]. Since this vector is independent from the iteration number, it emphasizes

exploration when there is a local optima. In addition to C⃗, A⃗ is also affecting the

exploration. However, A⃗ is affecting exploitation as well. This is mainly explained

by the dependence of A⃗ on the linearly decreasing vector a⃗. Since a⃗ decreases from 2

to 0 based on the iteration, A⃗ falls in the range of [-2,2], and when it is larger than 1

or smaller than -1, exploration is emphasized, otherwise, exploitation is emphasized.

The mathematical model of GWO also means that wolves are continuously changing

their positions to whatever point in the space. This is not suitable for feature

selection problems, where solutions should be in the binary form. Based on this

need, Emary et al. [23] developed a binary version of GWO (BGWO).

In BGWO, all solutions are in binary form at any given time. This is achieved by

applying a sigmoidal function on the product of A⃗ and D⃗ vectors in Eqs. (3.10)-

(3.12). The sigmoidal function is applied as in Eq. (3.15) for α solution and similarly

for β and δ solutions using A⃗2D⃗β and A⃗3D⃗δ respectively.

⃗cstepα =
1

1 + e−10(A⃗1D⃗α−0.5)
(3.15)

45

Intrusion Detection System using Feature Ranking and GWO

After applying the sigmoidal function, a random threshold is applied as in Eq. (3.16).

⃗bstepα =

 1 if ⃗cstepα ≥ rand

0 otherwise.
(3.16)

where rand is a random number drawn from uniform distribution of ∈ [0, 1]. The

random threshold is applied similarly to β and δ sigmoidal functions.

Then, X⃗1, X⃗2, X⃗3 are computed as in Eqs. (3.17) - (3.19).

X⃗1 =

 1 if (X⃗α + ⃗bstepα) ≥ 1

0 otherwise.
(3.17)

X⃗2 =

 1 if (X⃗β + ⃗bstepβ) ≥ 1

0 otherwise.
(3.18)

X⃗3 =

 1 if (X⃗δ + ⃗bstepδ) ≥ 1

0 otherwise.
(3.19)

Finally, the updated position of all wolves X⃗(t + 1) is computed using a suitable

crossover between X⃗1, X⃗2 and X⃗3 as show in Eq. (3.20).

X⃗(t+ 1) =


X⃗1 if rand < 1

3

X⃗2
1
3
≤ rand < 2

3

X⃗3 otherwise

(3.20)

where rand is a random number drawn from uniform distribution in the range [0,

1].

In BGWO, the best feature combination is the one with maximum classification

performance (or minimum error rate) and minimum number of selected features.

Therefore, the fitness function used in BGWO is shown in (3.21).

Fitness = αER(D) + β
|R|
|C|

(3.21)

where ER(D) is the error rate for the classifier of condition attribute set, R is the

length of selected feature subset, and C is the total number of features, α and β are

two parameters corresponding to the importance of classification quality and subset

length, α ∈ [0, 1] and β = 1− α; β = 0.01 by author [27] experiments.

46

Intrusion Detection System using Feature Ranking and GWO

3.7 Multi-class Classification using

One-vs-rest Strategy

Intrusion detection is a multi-class classification problem [3]. There are two

common strategies for such problems: one-vs-one and one-vs-rest (OvR). In one-

vs-one, a binary classifier is trained for each pair of classes, resulting in a total

of N(N−1)
2

binary classifiers where N is the number of classes. The class of a new

test instance is determined based on a majority vote. While this strategy involves

smaller subsets passed to each classifier, it is still considered computationally slower

than one-vs-rest strategy. Hence, we adopted one-vs-rest strategy.

In one-vs-rest, the training dataset is passed to N binary classifiers each rep-

resenting a class. As shown in Figure 3.3, each classifier takes the data with two

labels: positive label (usually 1) representing the assigned class, and negative (or

zero) label representing any other class.

When it comes to prediction, each classifier estimates a probability of classifying the

new test instance to its assigned class. The highest probability determines the class

of the test instance. This is illustrated in Figure 3.4 [78].

47

Intrusion Detection System using Feature Ranking and GWO

Figure 3.3: One-vs-rest (OvR) Dataset Separation

48

Intrusion Detection System using Feature Ranking and GWO

Figure 3.4: One-vs-rest (OvR) Approach

49

Intrusion Detection System using Feature Ranking and GWO

3.8 Summary

In this chapter, we first presented an overview of the proposed approach. There

are three main stages:

1. Splitting the dataset in a stratified fashion into 70% training dataset and 30%

testing dataset.

2. Preprocessing: starts by transforming the nominal features to numerical fea-

tures using probability density function (PDF), and then numerical features

are normalized using min-max, and at the last stage feature selection using

the proposed approach is applied.

3. Classification

After that, we analyzed NSL-KDD dataset to understand the motivation behind

it, the main attacks it contains, and its features with their respective values/range.

Then, we briefly explained nominal features transformation and numerical features

normalization.

After that, we explained thoroughly ANOVA F-value with an example. Simply

saying, ANOVA F-value is a well-known statistical test that tests whether the means

of three or more groups are equal or not. If F-value is around 1, then the means are

almost equal. If F-value is very large, then the means are different. When applying

ANOVA F-value to feature selection, we are aiming to select the features that have

the highest F-value. Because this means that these features can be used to predict

the class label.

After that, we explained thoroughly the mathematical model behind GWO and

BGWO. We also emphasized how mathematically GWO tries to balance between

exploration and exploitation. GWO, as a result, can efficiently manage the trade-

off between local optima and global optima. This is a main characteristic in any

efficient metaheuristic algorithm.

Finally, we presented a strategy for multi-class classification called one-vs-rest

(OvR). In this strategy, there will be a binary classifier for each label. In each

classifier, the positive label is for the assigned label, and the negative label is for

any other label. The training data will be passed to each of these classifiers. When

50

Intrusion Detection System using Feature Ranking and GWO

we want to predict a testing record, each classifier gives a probability on classifying

that record into its positive label. The label of the classifier with highest probability

will be assigned to the testing record.

51

Chapter 4

Experimental Setup and

Evaluation Metrics

4.1 Methodology

The proposed approach implements a hybrid feature selection algorithm that

uses ANOVA F-value to reduce the features dimension before applying a wrapper

method. The wrapper method uses GWO as a search strategy. The main goals of

the proposed approach are:

1. To reduce classification training and prediction time, while achieving similar

or better classification performance.

2. To reduce the search space and computation complexity of GWO such that

faster convergence is achieved and a smaller subset of features is selected.

Before verifying the efficiency of the proposed method, we need to tune the main

parameters affecting its performance. These parameters are:

1. ANOVA F-value Threshold: the threshold in this case is the percentage of

top-ranked features that we want to select.

2. GWO Population size: affects the convergence speed of GWO.

3. GWO Iterations: affects the execution time of GWO.

After that, the classification time and performance of the proposed approach

are compared to the classification time and performance with GWO only (without

52

Intrusion Detection System using Feature Ranking and GWO

ANOVA F-value) and without feature selection. To evaluate the classification per-

formance, we chose five classification models that are commonly used in IDS [37] [79]:

SVM, KNN, Decision Tree, Naive Bayes, and ANN.

For the sake of this research, we ran the experiments on NSL-KDD dataset, but we

plan to continue experimentation on other recent datasets, such as CIC-IDS-2017

and CSE-CIC-IDS-2018. To make sure that we avoid any overfitting or biasing is-

sues, we ran 30 experiments for each of the three approaches. This applies also to

the parameters tuning experiments. In each experiment run, the data is randomly

shuffled and separated to 70% training set and 30% testing set. The separation is

performed in a stratified fashion, so it preserves the original data distribution. Af-

terwards, we consider the average of each evaluation metric to do the comparison.

The results and their analysis are reported in the next chapter.

4.2 Environment and Implementation Tools

We ran the experiments on a machine with the following specifications:

Table 4.1: Machine specs

OS Windows 10 Pro 64-bit

RAM 16.0 GB

CPU
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

with 4 Cores and 8 Logical Processors

Furthermore, the algorithm was implemented in Python 3.7.5 where the following

tools and libraries were used:

• PyCharm Community Edition: a well-known IDE for Python applications.

• NumPy [80]: a numerical Python library that makes it easy to manipulate

arrays and matrices.

• pandas [81]: a Python library used for data manipulation and analysis. So it

makes it easy to read/write the data from/to CSV or Excel files.

• Matpolotlib [82]: a plotting Python library that works well with pandas and

numpy.

53

Intrusion Detection System using Feature Ranking and GWO

• BGWO Matlab implementation [23]: the original implementation of the algo-

rithm from the authors. We did the same implementation in Python taking

advantage of EvoloPy [83], which is a repository that implements many SI

algorithms (including GWO) in Pyhton.

• scikit-learn [84]: a well-known machine-learning library. We used many out of

the box algorithms from this library including:

– f_classif to realize ANOVA F-value and SelectPercentile to apply a

threshold on top ranked features.

– SVC which stands for Support Vector Classifier is an SVM based algo-

rithm that by default uses radial basis function (RBF) as a kernel.

– KNeighborsClassifier with the default value of neighbors which is 5.

– DecisionTreeClassifier with the default algorithm which is CART (Clas-

sification and Regression Tree).

– GaussianNB stands for Gaussian Naive Bayes.

– MLPClassifier stands for Multi-layer Perceptron classifier, which is an

ANN algorithm. It comes with a default value of 100 for the hidden

layers.

– OneVsRestClassifier which is a realization for one-vs-rest multi-class clas-

sification strategy.

4.3 Evaluation Metrics

The effectiveness of any IDS is mainly measured by [3] [58] [73]: overall ac-

curacy, detection rate, false alarm rate, training time, and prediction time. A

well-performing IDS would achieve a low false alarm rate, and high accuracy and

detection rate.

The common way to derive the definition of these metrics is through a confusion

matrix. Just for simplicity, we will assume an IDS that performs binary classifica-

tion. In this IDS, a record that is labeled as ”attack” is a ”Positive” record, and a

record that is labeled as ”normal” is a ”Negative” record. Confusion matrix is a two

54

Intrusion Detection System using Feature Ranking and GWO

by two matrix that represents the four possible combinations of the actual records

and the predicted records.

Table 4.2: Confusion matrix

Predicted

Negative (normal) Positive (attack)

Actual
Negative (normal) TN FP

Positive (attack) FN TP

Table 4.2 shows a confusion matrix where:

• True Negative (TN): represents the number of normal records correctly pre-

dicted as normal.

• False Positive (FP): represents the number of attack records wrongly predicted

as normal.

• False Negative (FN): represents the number of normal records wrongly pre-

dicted as attack.

• True Positive (TP): represents the number of attack records correctly predicted

as attack.

Based on the confusion matrix, we can define the metrics mentioned above as follows:

• Overall Accuracy: is the percent of correctly classified records. It is calculated

by:

Overall Accuracy =
TN + TP

TN + FP + FN + TP
(4.1)

• Detection Rate (DR): also called Recall or sensitivity or true positive rate

(TPR). It is the percent of correctly classified attacks to the total number of

actual attacks. When it is near 1, it means that the classifier performed well

in predicting almost all actual attacks. It is calculated by:

Detection Rate (DR) = TP

TP + FN
(4.2)

• False Alarm Rate (FAR): also called False Positive Rate (FPR). It is the

percentage of wrongly classified normal records. When it is near zero, it means

55

Intrusion Detection System using Feature Ranking and GWO

that the classifier performed well in avoiding misprediction of almost all normal

records. It is calculated by:

FAR =
FP

FP + TN
(4.3)

Another two well-known metrics that can be calculated from confusion matrix

are Prediction and F1. They are calculated as in Eq. (4.4) and Eq. (4.5).

Precision =
TP

TP + FP
(4.4)

F1 =
2TP

2TP + FP + FN
(4.5)

In this study, we are considering intrusion detection as a multi-class problem. In

multi-class case, all metrics except overall accuracy need to be calculated per class.

Therefore, we have to treat each class as if it is the positive class that we want to

detect, and the other classes are negative. We demonstrate this treatment by having

an example of a 5x5 confusion matrix on NSL-KDD classes. This confusion matrix

is shown in Table 4.3.

Table 4.3: Multi-class confusion matrix

Predicted

Normal DoS Probe R2L U2R

Actual

Normal 21761 286 677 287 106

DoS 1183 14535 209 74 15

Probe 510 72 3550 68 23

R2L 631 77 197 235 24

U2R 31 1 1 2 1

We will break this confusion matrix into 5 smaller matrices each of size 2x2. Fig-

ure 4.1 shows how to calculate TP, FP and FN when we consider U2R class. TN is

calculated by subtracting (TP, FP, FN) from the sum of the matrix which is 44556

in this case. Same idea applies on each class.

Tables 4.4 - 4.8 show the resulting confusion matrices for each class in NSL-KDD.

And now, we can easily calculate the metrics as follows:

• Overall Accuracy: 21761+14535+3550+235+1
44556

= 40082
44556

= 0.8996

56

Intrusion Detection System using Feature Ranking and GWO

Figure 4.1: Example on how to calculate TP, FN and FP for U2R class

• Normal DR: 21761
21761+1356

= 21761
23117

= 0.9413

• DoS DR: 14535
14535+1481

= 14535
16016

= 0.9075

• Probe DR: 3550
3550+673

= 3550
4223

= 0.8407

• R2L DR: 235
235+929

= 235
1164

= 0.2019

• U2R DR: 1
1+35

= 1
36

= 0.0278

• Normal FAR: 2355
2355+19084

= 2355
21439

= 0.1098

• DoS FAR: 436
436+28104

= 436
28540

= 0.0153

• Probe FAR: 1084
1084+39249

= 1084
40333

= 0.0269

• R2L FAR: 431
431+42961

= 431
43392

= 0.0099

• U2R FAR: 168
168+44352

= 168
44520

= 0.0037

57

Intrusion Detection System using Feature Ranking and GWO

Table 4.4: Normal Confusion matrix

Predicted

Other Normal

Actual
Other 19084 2355

Normal 1356 21761

Table 4.5: DoS Confusion matrix

Predicted

Other DoS

Actual
Other 28104 436

DoS 1481 14535

Table 4.6: Probe Confusion matrix

Predicted

Other Probe

Actual
Other 39249 1084

Probe 673 3550

Table 4.7: R2L Confusion matrix

Predicted

Other R2L

Actual
Other 42961 431

R2L 929 235

Table 4.8: U2R Confusion matrix

Predicted

Other U2R

Actual
Other 44352 168

U2R 35 1

58

Chapter 5

Result Analysis

In this chapter, we first present how we selected the population and iteration

for GWO, and then we conclude the performance analysis of our hybrid feature

selection approach.

5.1 Parameters Tuning for GWO

There are two main factors affecting the convergence and search time of GWO:

population and maximum iterations. Population refers to the number of wolves in

GWO and it is the number of solutions. Maximum iterations is used as a stopping

criteria in GWO.

Since we are using BGWO, which is the binary version of GWO, it is stated

in the original paper [23] that BGWO achieves fast convergence with reasonable

population size and within few iterations. To verify these findings, we choose to

perform our experiments using different combinations of population and iteration

as shown in in Table 5.1. Furthermore, we included all the possibilities of ANOVA

F-value thresholds (percentages of top ranked features). This is to make sure that

we are not doing a biased measurement, and it will be useful to select the most

reasonable ANOVA F-value threshold later on.

59

Intrusion Detection System using Feature Ranking and GWO

Table 5.1: Chosen values for ANOVA F-value threshold, GWO population, and

GWO iterations

ANOVA F-value 20%, 25%, 30%, 35%, 40%, 45%, 50%,

55%, 60%, 65%, 70%

GWO Population 5, 10, 20

GWO Iteration 10, 20, 40, 70

In terms of convergence, we plotted for each population four graphs, each repre-

senting an iteration value. This is shown in Figures 5.1-5.3, where each line repre-

sents the average value of fitness for each iteration based on a specific threshold from

ANOVA F-value. It can be seen from these figures that 10 iterations are more than

enough for the fitness to converge regardless of the threshold value. The same can

be observed from the selected features per iteration graphs (Figure 5.4-5.6). More-

over, Figures 5.7-5.9 show that having more than 10 iterations will highly affect the

execution time of BGWO without actually having better convergence.

Figure 5.1: GWO Convergence curve when Population is 5

60

Intrusion Detection System using Feature Ranking and GWO

Figure 5.2: GWO Convergence curve when Population is 10

Figure 5.3: GWO Convergence curve when Population is 20

61

Intrusion Detection System using Feature Ranking and GWO

Figure 5.4: GWO Selected Features curve when Population is 5

Figure 5.5: GWO Selected Features curve when Population is 10

62

Intrusion Detection System using Feature Ranking and GWO

Figure 5.6: GWO Selected Features curve when Population is 20

Figure 5.7: GWO Avg Training Time when Population is 5

63

Intrusion Detection System using Feature Ranking and GWO

Figure 5.8: GWO Avg Training Time when Population is 10

Figure 5.9: GWO Avg Training Time when Population is 20

So, the suitable maximum iteration is 10. To determine the suitable population

for this number of iterations, we need to compare the starting and ending values

of the fitness. It is difficult to check these values from Figures 5.1-5.3. Therefore,

we included them separately in Table 5.2. From this table, it can noticed that a

population size of 20 does always have the lowest starting and ending values of the

fitness regardless of the threshold.

64

Intrusion Detection System using Feature Ranking and GWO

Table 5.2: The starting and ending values of the fitness with 10 iterations

ANOVA F-

value Thresh-

old (Percent-

age)

Population Starting Fit-

ness Value

Ending Fitness

Value

20

5 0.11863 0.10972

10 0.11345 0.10548

20 0.11065 0.10415

25

5 0.09167 0.06967

10 0.08108 0.06486

20 0.07230 0.06376

30

5 0.06462 0.04832

10 0.05659 0.04202

20 0.04929 0.04084

35

5 0.03191 0.02541

10 0.02931 0.02364

20 0.02803 0.02331

40

5 0.03115 0.0241

10 0.02689 0.02233

20 0.0257 0.02169

45

5 0.0264 0.02021

10 0.02232 0.018

20 0.02071 0.01743

50

5 0.022 0.01806

10 0.02049 0.01703

20 0.0195 0.01635

55

5 0.02182 0.01761

10 0.01912 0.01656

20 0.01857 0.01611

60

5 0.02086 0.01707

10 0.0194 0.01636

20 0.01861 0.01589

65

Intrusion Detection System using Feature Ranking and GWO

Continuation of Table 5.2

ANOVA F-

value Thresh-

old (Percent-

age)

Population Starting Fit-

ness Value

Ending Fitness

Value

65

5 0.02092 0.01736

10 0.01984 0.01639

20 0.01799 0.01557

70

5 0.01854 0.01547

10 0.01701 0.01464

20 0.01641 0.01396

5.2 Classification Performance and Selected Fea-

tures

After choosing the population size as 20 and the maximum iterations as 10 for

GWO, we will compare the performance of our hybrid feature selection approach

with: the whole process without ANOVA F-value, and the whole process without

feature selection. As in the previous section, we present the different combinations

of the ANOVA F-value thresholds (see Table 5.1) within our approach.

As a matter of fact, we have noticed that the classifiers of Decision Tree, MLP,

and KNN are already performing well without any feature selection in terms of

overall accuracy, detection rate and false alarm rate for most of the classes. While

SVC achieved lower overall accuracy, it achieved higher detection rate for some

classes. On the other hand, Gaussian NB was the worst among these, especially

when it comes to overall accuracy.

Consequently, our main goal will be to emphasize that using a lower number of

features, we have been able to reduce the training time and testing time of most of

the classifiers while achieving almost the same metrics (less in most cases). At the

same time, we will highlight the reduction in GWO search time.

Throughout our experiments, we have concluded that the threshold of 50% for

66

Intrusion Detection System using Feature Ranking and GWO

ANOVA F-value is the most balanced threshold. At this threshold, we are able to

say that there is a good reduction in number of features, training time, and testing

time, while achieving almost the same metrics.

Also at this threshold, the features are first reduced from 41 to 20 in ANOVA

F-value (see Figure 5.10), and then it is reduced to an average of 13 feature in

GWO. Figure 5.11 shows the how frequent features were selected during the thirty

experiments.

Figure 5.10: Average ANOVA F-value for each feature in NSL-KDD. All the 20

features below the horizontal grey line were selected

Compared to GWO only without any prior feature ranking, we can see that the

approach method reduces the search time by five seconds, as shown in Table 5.3.

Table 5.3: GWO with 50% threshold vs. GWO only

Approach Avg Selected Features Search Time (seconds)

GWO with 50% threshold 13 22.778

GWO without threshold 25 27.029

Based on the threshold of 50%, we start with Figures 5.12a and 5.12b which show

the training time and testing time of the different classifiers. We can see that some

classifiers, such as Decision Tree and Gaussian NB are already fast even without

67

Intrusion Detection System using Feature Ranking and GWO

Figure 5.11: Most frequent features selected by GWO with a threshold of 50%

any feature selection. While for KNN and SVM, the training time and the testing

time are significantly improved with the selected threshold. The training time is

reduced from 75.901 seconds to 17.578 seconds in case of KNN (77% reduction),

and from 498.898 seconds to 191.080 seconds in case of SVM (62% reduction). And

the testing time is reduced from 165.024 seconds to 11.592 seconds in case of KNN

(93% reduction), and from 72.116 seconds to 39.157 seconds in case of SVM (46%

reduction).

If we look at the overall accuracy in Figure 5.13, we can observe that the accuracy

of Gaussian NB was improved using the selected threshold from 36.434% to 81.593%.

For the other classifiers, the accuracy without feature selection is a bit higher, but

still we are able to achieve almost the same accuracy.

When it comes to detection rate of each class (shown in Figures 5.14-5.18), we

can see that there is a similar behavior in Normal and DoS classes DRs to the

behavior we have seen in overall accuracy. This is because these two classes are the

majority, so detecting them is an easier task. While for Probe class, we are getting

similar detection rate except for Gaussian classifier which have a much higher value.

And finally, regarding R2L and U2R classes, these two are the most difficult to

detect in any IDS and using any method because of their low number of records in

the dataset.

68

Intrusion Detection System using Feature Ranking and GWO

When it comes to False Alarm Rate (FAR) of each class (shown in Figures 5.19-

5.23), we need to remember that having a low FAR is needed, but at the same

time we need the high DR. So, FAR and DR always need to be interpreted together.

Taking this into consideration, the low FAR achieved for R2L and U2R (in all cases)

is useless as it comes with low DR. While the low FAR achieved for DoS and Probe

(a) Training Time

(b) Testing Time

Figure 5.12: Classifier Time Performance

69

Intrusion Detection System using Feature Ranking and GWO

(in all cases) is useful as they have high DRs.

Figures 5.24-5.28 and Figures 5.29-5.33 show the precision and F1 score for each

class, respectively.

We have presented all the metrics considering our IDS as a multi-class classifier.

However, if we want to consider our IDS as a binary classifier, then we will have

Figure 5.13: Classifier Overall Accuracy

Figure 5.14: Normal Class Detection Rate

70

Intrusion Detection System using Feature Ranking and GWO

only two labels: normal and attack. Figures 5.34a and 5.34b show the training

and testing time of the binary classifier. And Figures 5.35-5.37 show the accuracy,

detection rate, and false alarm rate of the binary classifier.

It is noticed that using 50% as a threshold we have been able to achieve good time

reduction in both training and testing for KNN and SVM, while achieving similar

Figure 5.15: DoS Class Detection Rate

Figure 5.16: Probe Class Detection Rate

71

Intrusion Detection System using Feature Ranking and GWO

performance in the other metrics. For KNN, the training time is reduced from

17.264 seconds to 6.949 seconds (59% reduction), and the testing time is reduced

from 33.803 seconds to 3.663 seconds (89% reduction). For SVM, the training time

is reduced from 368.507 seconds to 119.024 seconds (68% reduction), and the testing

time is reduced from 31.782 seconds to 16.565 seconds (48% reduction). As for the

Figure 5.17: R2L Class Detection Rate

Figure 5.18: U2R Class Detection Rate

72

Intrusion Detection System using Feature Ranking and GWO

other classifiers, they are already fast in training and testing, and we are achieving

similar metrics.

Figure 5.19: Normal Class False Alarm Rate

Figure 5.20: DoS Class False Alarm Rate

73

Intrusion Detection System using Feature Ranking and GWO

Figure 5.21: Probe Class False Alarm Rate

Figure 5.22: R2L Class False Alarm Rate

74

Intrusion Detection System using Feature Ranking and GWO

Figure 5.23: U2R Class False Alarm Rate

Figure 5.24: Normal Class Precision

75

Intrusion Detection System using Feature Ranking and GWO

Figure 5.25: DoS Class Precision

Figure 5.26: Probe Class Precision

76

Intrusion Detection System using Feature Ranking and GWO

Figure 5.27: R2L Class Precision

Figure 5.28: U2R Class Precision

77

Intrusion Detection System using Feature Ranking and GWO

Figure 5.29: Normal Class F1 score

Figure 5.30: DoS Class F1 score

78

Intrusion Detection System using Feature Ranking and GWO

Figure 5.31: Probe Class F1 score

Figure 5.32: R2L Class F1 score

79

Intrusion Detection System using Feature Ranking and GWO

Figure 5.33: U2R Class F1 score

80

Intrusion Detection System using Feature Ranking and GWO

(a) Training Time

(b) Testing Time

Figure 5.34: Binary Classifier Time Performance

81

Intrusion Detection System using Feature Ranking and GWO

Figure 5.35: Binary Classifier Overall Accuracy

Figure 5.36: Binary Classifier Detection Rate

82

Intrusion Detection System using Feature Ranking and GWO

Figure 5.37: Binary Classifier False Alarm Rate

Figure 5.38: Binary Classifier Precision

83

Intrusion Detection System using Feature Ranking and GWO

Figure 5.39: Binary Classifier F1 score

84

Intrusion Detection System using Feature Ranking and GWO

5.3 Summary

In this chapter, we discussed first how to tune GWO parameters. GWO perfor-

mance is measured by its ability to convergence fast and to the lowest possible fitness

value. There are two main parameters that control GWO convergence and search

time: population size, and maximum iterations. Population size is the number of

solutions, and maximum iterations serves as the stopping criteria. After doing ex-

periments on several combinations of these two parameters alongside with different

ANOVA F-value thresholds, we have concluded that a maximum iterations of 10

is enough to converge, and a population size of 20 has the lowest starting value of

fitness and the lowest ending value of fitness.

After that, we discussed thoroughly the performance of the proposed approach

using the selected parameters for GWO. Throughout the experiments, we have con-

cluded that the most balanced threshold for top ranked features from ANOVA F-

value is a threshold of 50%. By balanced we mean, that it selects reasonable number

of features that reduces the training time and testing time of the classifier while

achieving similar classification performance.

In general, the proposed approach did not improve the classification performance

of the classifiers, but at least it achieved similar results in less time and less dimen-

sion. The only exception to this is Naive Bayes, in which the overall accuracy was

improved in multi-class classification. The major improvements in training time and

testing time were in KNN and SVM, in both multi-class classification and binary

classification.

85

Chapter 6

Conclusion and Future Work

In this study, we proposed a hybrid feature selection approach to address two

challenges in any IDS:

1. Reduce dimensionality, and achieve short training time and near real-time

prediction.

2. Achieve high detection rate, high accuracy, and low false alarm rate at the

same time.

The hybrid approach uses ANOVA F-value in the first stage, and then it uses a

wrapper method with GWO as a search strategy and Random Forest for evaluation

in the second stage. We applied the proposed approach on NSL-KDD dataset,

where we had first to transform nominal features to numerical using probability

density function (PDF), and then we had to normalize numerical features using

min-max. After that, we applied the proposed feature selection method. At the last

stage, multi-class classification was applied using one-vs-rest strategy. We used five

common classifiers: SVM, KNN, ANN, Naive Bayes, and Decision Tree.

We ran 30 experiments on the whole dataset. In each experiment, the data was

randomly shuffled and then separated in a stratified fashion (to guarantee same

distribution as original data) to 70% training data and 30% testing data. For each

metric, the average of the 30 runs was computed.

The performance of the proposed approach was compared to the performance of

classifiers without feature selection, and to feature selection using GWO only. After

analyzing the results, we can conclude the following:

86

Intrusion Detection System using Feature Ranking and GWO

• The best parameters for having a well-performing GWO in terms of fast con-

vergence and short search time are: a population size of 20 and maximum

iterations of 10.

• The hybrid feature selection approach we proposed uses a threshold of 50%

from feature ranking and then applies GWO. We have been able to reduce the

search time of GWO by 18% while selecting a smaller subset of features. Our

approach resulted in a feature reduction from 41 to 13 (68% reduction), while

GWO only reduced the features from 41 to 25 (39% reduction).

• Multi-class classification: we have aimed to reduce the classification training

time and testing time, while achieving similar or better classification perfor-

mance. However, we have seen that the proposed approach did not improve

the classification performance except for few cases (e.g. GaussianNB classi-

fier), but at least it achieved similar performance with better time and less

dimension. For some classifiers, the reduction was negligible, while for others

it was worthy. For KNN, the training time was reduced by 77% and the

testing time was reduced by 93%. For SVM, the training time was reduced

by 62% and the testing time was reduced by 46%.

• Binary classification: same applies here, we have been able to achieve similar

performance with time reduction and less dimension. Again, the time reduc-

tion was obvious in KNN and SVM. For KNN, the training time was reduced

by 59% and the testing time was reduced by 89%. For SVM, the training

time was reduced by 68% and the testing time was reduced by 48%.

As noticed above, the proposed approach showed few improvements compared

to the classifiers without feature selection. The justification behind this is that

NSL-KDD is not that challenging to most computing processors nowadays. It has

a dimension of 41 features, and it consists of around 150,000 records. The main

reasons to choose it were its popularity, and its simplicity.

In the future, we aim to experiment the proposed approach on more recent and larger

datasets, such as CIC-IDS-217 and CSE-CIC-IDS-2018. We could not include those

datasets in the scope of this study, because they need more analysis, data cleaning,

87

Intrusion Detection System using Feature Ranking and GWO

and data sampling. We also aim to experiment with several swarm intelligence

algorithms such as FA and WSO.

88

References

[1] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion detection

datasets,” Procedia Computer Science, vol. 167, pp. 636–645, 2020.

[2] T. Stevens, Cyber Security and the Politics of Time. Cambridge University

Press, 2015.

[3] S. M. H. Bamakan, H. Wang, T. Yingjie, and Y. Shi, “An effective intrusion de-

tection framework based on mclp/svm optimized by time-varying chaos particle

swarm optimization,” Neurocomputing, vol. 199, pp. 90–102, 2016.

[4] Z.-H. Chen and C.-W. Tsai, “An effective metaheuristic algorithm for intrusion

detection system,” in 2018 IEEE International Conference on Smart Internet

of Things (SmartIoT). IEEE, 2018, pp. 154–159.

[5] B. Selvakumar and K. Muneeswaran, “Firefly algorithm based feature selection

for network intrusion detection,” Computers & Security, 2018.

[6] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based on

abc-afs algorithm for misuse and anomaly detection,” Computer Networks, vol.

136, pp. 37–50, 2018.

[7] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He, “Fuzzi-

ness based semi-supervised learning approach for intrusion detection system,”

Information Sciences, vol. 378, pp. 484–497, 2017.

[8] K. K. Vasan and B. Surendiran, “Dimensionality reduction using principal com-

ponent analysis for network intrusion detection,” Perspectives in Science, vol. 8,

pp. 510–512, 2016.

89

Intrusion Detection System using Feature Ranking and GWO

[9] D. Papamartzivanos, F. G. Mármol, and G. Kambourakis, “Dendron: Genetic

trees driven rule induction for network intrusion detection systems,” Future

Generation Computer Systems, vol. 79, pp. 558–574, 2018.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of

the kdd cup 99 data set,” in 2009 IEEE symposium on computational intelli-

gence for security and defense applications. IEEE, 2009, pp. 1–6.

[11] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing

a systematic approach to generate benchmark datasets for intrusion detection,”

computers & security, vol. 31, no. 3, pp. 357–374, 2012.

[12] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new

intrusion detection dataset and intrusion traffic characterization.” in ICISSP,

2018, pp. 108–116.

[13] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu, “Ad-

vancing feature selection research,” ASU feature selection repository, pp. 1–28,

2010.

[14] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,”

Data Classification: Algorithms and Applications, p. 37, 2014.

[15] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,

“Feature selection: A data perspective,” ACM Computing Surveys (CSUR),

vol. 50, no. 6, pp. 1–45, 2017.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley

& Sons, 2012.

[17] S. Wright, “The interpretation of population structure by f-statistics with spe-

cial regard to systems of mating,” Evolution, pp. 395–420, 1965.

[18] Y. Li, J.-L. Wang, Z.-H. Tian, T.-B. Lu, and C. Young, “Building lightweight

intrusion detection system using wrapper-based feature selection mechanisms,”

Computers & Security, vol. 28, no. 6, pp. 466–475, 2009.

90

Intrusion Detection System using Feature Ranking and GWO

[19] H. Liu and R. Setiono, “Feature selection and classification-a probabilistic wrap-

per approach,” in Proceedings of 9th International Conference on Industrial and

Engineering Applications of AI and ES, 1997, pp. 419–424.

[20] S. Mukherjee and N. Sharma, “Intrusion detection using naive bayes classifier

with feature reduction,” Procedia Technology, vol. 4, pp. 119–128, 2012.

[21] H. ZHANG, R. TAO, Z.-y. LI, and Z.-h. CAI, “A research and application

of feature selection based on knn and tabu search algorithm in the intrusion

detection,” Acta Electronica Sinica, vol. 7, 2009.

[22] L. Davis, Handbook of genetic algorithms. Van Nostrand Reinhold, New York,

1991.

[23] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary grey wolf optimization

approaches for feature selection,” Neurocomputing, vol. 172, pp. 371–381, 2016.

[24] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine

and Human Science. Ieee, 1995, pp. 39–43.

[25] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning

approach to the traveling salesman problem,” IEEE Transactions on evolution-

ary computation, vol. 1, no. 1, pp. 53–66, 1997.

[26] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in International

symposium on stochastic algorithms. Springer, 2009, pp. 169–178.

[27] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in

engineering software, vol. 69, pp. 46–61, 2014.

[28] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a

review of recent variants and applications,” Neural Computing and Applications,

pp. 1–23, 2017.

[29] J. K. Seth and S. Chandra, “Intrusion detection based on key feature selection

using binary gwo,” in 2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom). IEEE, 2016, pp. 3735–3740.

91

Intrusion Detection System using Feature Ranking and GWO

[30] E. Devi and R. Suganthe, “Feature selection in intrusion detection grey wolf

optimizer,” Asian Journal of Research in Social Sciences and Humanities, vol. 7,

no. 3, pp. 671–682, 2017.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[32] N. Bambrick. (2016, Jul) Support vector machines: A simple explanation.

Accessed: 2020-08-16. [Online]. Available: https://www.kdnuggets.com/2016/

07/support-vector-machines-simple-explanation.html

[33] A. Tandel. (2017, Aug) Support vector machines - a brief overview.

Accessed: 2020-08-16. [Online]. Available: https://towardsdatascience.com/

support-vector-machines-a-brief-overview-37e018ae310f

[34] A. Kowalczyk. (2017, Apr) Svm - understanding the math - part

1 - the margin. Accessed: 2020-08-16. [Online]. Available: https:

//www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/

[35] B. V. Dasarathy, Nearest Neighbor (NN) Norms NN pattern Classification Tech-

niques. IEEE Computer Society Press, 01 1991.

[36] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Else-

vier, 2011.

[37] N. F. Haq, A. R. Onik, M. A. K. Hridoy, M. Rafni, F. M. Shah, and D. M. Farid,

“Application of machine learning approaches in intrusion detection system: a

survey,” IJARAI-International Journal of Advanced Research in Artificial In-

telligence, vol. 4, no. 3, pp. 9–18, 2015.

[38] I. T. Jolliffe, “Principal components in regression analysis,” in Principal com-

ponent analysis. Springer, 1986, pp. 129–155.

[39] P. Comon, “Independent component analysis, a new concept?” Signal process-

ing, vol. 36, no. 3, pp. 287–314, 1994.

[40] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysis-a brief

tutorial,” in Institute for Signal and information Processing, vol. 18, no. 1998,

1998, pp. 1–8.

92

https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html
https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html
https://towardsdatascience.com/support-vector-machines-a-brief-overview-37e018ae310f
https://towardsdatascience.com/support-vector-machines-a-brief-overview-37e018ae310f
https://www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/
https://www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/

Intrusion Detection System using Feature Ranking and GWO

[41] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally

linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[42] A. Almomani, M. Alweshah, and S. Al, “Metaheuristic algorithms-based feature

selection approach for intrusion detection,” Machine Learning for Computer and

Cyber Security: Principle, Algorithms, and Practices, p. 184, 2019.

[43] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in

Machine Learning Proceedings 1992. Elsevier, 1992, pp. 249–256.

[44] H. Liu and R. Setiono, “Chi2: Feature selection and discretization of numeric

attributes,” in Proceedings of 7th IEEE International Conference on Tools with

Artificial Intelligence. IEEE, 1995, pp. 388–391.

[45] C. Gini, “Variability and mutability, contribution to the study of statistical

distribution and relaitons,” Studi Economico-Giuricici della R, 1912.

[46] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,

1996.

[47] F. Glover and M. Laguna, “General purpose heuristics for integer

programming—part i,” Journal of Heuristics, vol. 2, no. 4, pp. 343–358, 1997.

[48] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview

and conceptual comparison,” ACM computing surveys (CSUR), vol. 35, no. 3,

pp. 268–308, 2003.

[49] S. Voß, “Meta-heuristics: The state of the art,” in Local Search for Planning and

Scheduling, A. Nareyek, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

2001, pp. 1–23.

[50] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated

annealing: Theory and applications. Springer, 1987, pp. 7–15.

[51] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1, no. 3,

pp. 190–206, 1989.

93

Intrusion Detection System using Feature Ranking and GWO

[52] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a

review of recent variants and applications,” Neural computing and applications,

pp. 1–23, 2018.

[53] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of global optimization,

vol. 11, no. 4, pp. 341–359, 1997.

[54] D. Karaboga, “An idea based on honey bee swarm for numerical optimization,”

Technical report-tr06, Erciyes university, engineering faculty, computer …, Tech.

Rep., 2005.

[55] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf,

K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman, “Evalu-

ating intrusion detection systems without attacking your friends: The 1998

darpa intrusion detection evaluation,” MASSACHUSETTS INST OF TECH

LEXINGTON LINCOLN LAB, Tech. Rep., 1999.

[56] Kdd cup 1999. Accessed: 2020-03-03. [Online]. Available: http://kdd.ics.uci.

edu/databases/kddcup99/kddcup99.html

[57] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, “Statistical

analysis of honeypot data and building of kyoto 2006+ dataset for nids eval-

uation,” in Proceedings of the first workshop on building analysis datasets and

gathering experience returns for security, 2011, pp. 29–36.

[58] E. Hodo, X. J. A. Bellekens, A. W. Hamilton, C. Tachtatzis, and R. C.

Atkinson, “Shallow and deep networks intrusion detection system: A

taxonomy and survey,” CoRR, vol. abs/1701.02145, 2017. [Online]. Available:

http://arxiv.org/abs/1701.02145

[59] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. C. Atkinson, and

X. J. A. Bellekens, “A taxonomy and survey of intrusion detection system

design techniques, network threats and datasets,” CoRR, vol. abs/1806.03517,

2018. [Online]. Available: http://arxiv.org/abs/1806.03517

94

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://arxiv.org/abs/1701.02145
http://arxiv.org/abs/1806.03517

Intrusion Detection System using Feature Ranking and GWO

[60] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, “Data mining tech-

niques in intrusion detection systems: A systematic literature review,” IEEE

Access, vol. 6, pp. 56 046–56 058, 2018.

[61] M. M. Lisehroodi, Z. Muda, and W. Yassin, “A hybrid framework based on

neural network mlp and k-means clustering for intrusion detection system,” in

4th International Conference on Computing and Informatics, ICOCI, 2013.

[62] R. Ranjan and G. Sahoo, “A new clustering approach for anomaly

intrusion detection,” CoRR, vol. abs/1404.2772, 2014. [Online]. Available:

http://arxiv.org/abs/1404.2772

[63] S. Lee, G. Kim, and S. Kim, “Self-adaptive and dynamic clustering for online

anomaly detection,” Expert Systems with Applications, vol. 38, no. 12, pp.

14 891–14 898, 2011.

[64] A. Saied, R. E. Overill, and T. Radzik, “Detection of known and unknown

ddos attacks using artificial neural networks,” Neurocomputing, vol. 172, pp.

385–393, 2016.

[65] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion

detection using recurrent neural networks,” IEEE Access, vol. 5, pp. 21 954–

21 961, 2017.

[66] M. Govindarajan and R. Chandrasekaran, “Intrusion detection using neural

based hybrid classification methods,” Computer networks, vol. 55, no. 8, pp.

1662–1671, 2011.

[67] Y. Yi, J. Wu, and W. Xu, “Incremental svm based on reserved set for network

intrusion detection,” Expert Systems with Applications, vol. 38, no. 6, pp. 7698–

7707, 2011.

[68] L. Koc, T. A. Mazzuchi, and S. Sarkani, “A network intrusion detection sys-

tem based on a hidden naïve bayes multiclass classifier,” Expert Systems with

Applications, vol. 39, no. 18, pp. 13 492–13 500, 2012.

95

http://arxiv.org/abs/1404.2772

Intrusion Detection System using Feature Ranking and GWO

[69] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour, “Cy-

ber intrusion detection by combined feature selection algorithm,” Journal of

information security and applications, vol. 44, pp. 80–88, 2019.

[70] B. Hajimirzaei and N. J. Navimipour, “Intrusion detection for cloud computing

using neural networks and artificial bee colony optimization algorithm,” ICT

Express, vol. 5, no. 1, pp. 56–59, 2019.

[71] A. A. Aburomman and M. B. I. Reaz, “A novel svm-knn-pso ensemble method

for intrusion detection system,” Applied Soft Computing, vol. 38, pp. 360–372,

2016.

[72] N. Moustafa, J. Slay, and G. Creech, “Novel geometric area analysis tech-

nique for anomaly detection using trapezoidal area estimation on large-scale

networks,” IEEE Transactions on Big Data, 2017.

[73] T. Hamed, J. B. Ernst, and S. C. Kremer, “A survey and taxonomy of classifiers

of intrusion detection systems,” in Computer and network security essentials.

Springer, 2018, pp. 21–39.

[74] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly de-

tection: methods, systems and tools,” Ieee communications surveys & tutorials,

vol. 16, no. 1, pp. 303–336, 2013.

[75] Z. D. Yenice, N. Adhikari, Y. K. Wong, V. Aksakalli, A. Taskin Gumus, and

B. Abbasi, “SPSA-FSR: Simultaneous Perturbation Stochastic Approximation

for Feature Selection and Ranking,” arXiv e-prints, p. arXiv:1804.05589, Apr.

2018.

[76] B. C. Beins and M. A. McCarthy, Research methods and statistics. Cambridge

University Press, 2017.

[77] Understanding analysis of variance (anova) and

the f-test. Accessed: 2020-07-30. [Online]. Avail-

able: https://blog.minitab.com/blog/adventures-in-statistics-2/

understanding-analysis-of-variance-anova-and-the-f-test

96

https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test
https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test

Intrusion Detection System using Feature Ranking and GWO

[78] H. J. Escalante, S. V. Rodriguez, J. Cordero, A. R. Kristensen, and C. Cornou,

“Sow-activity classification from acceleration patterns: a machine learning ap-

proach,” Computers and electronics in agriculture, vol. 93, pp. 17–26, 2013.

[79] S. K. Biswas, “Intrusion detection using machine learning: A comparison

study,” International Journal of Pure and Applied Mathematics, vol. 118, no. 19,

pp. 101–114, 2018.

[80] Numpy library. Accessed: 2020-08-13. [Online]. Available: https://numpy.org/

[81] pandas library. Accessed: 2020-08-13. [Online]. Available: https://pandas.

pydata.org/

[82] Matplotlib library. Accessed: 2020-08-13. [Online]. Available: https:

//matplotlib.org/

[83] H. Faris, I. Aljarah, S. Mirjalili, P. A. Castillo, and J. J. Merelo, “Evolopy:

An open-source nature-inspired optimization framework in python.” in IJCCI

(ECTA), 2016, pp. 171–177.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Ma-

chine learning in python,” Journal of machine learning research, vol. 12, no.

Oct, pp. 2825–2830, 2011.

97

https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://matplotlib.org/

Appendix A

Implementation

[]: import feather

import numpy as np

from sklearn.model_selection import train_test_split

First we define the features order as in NSL-KDD

[]: basic_features = ["duration",

"protocol_type",

"service",

"flag",

"src_bytes",

"dst_bytes",

"land",

"wrong_fragment",

"urgent"]

content_features = ["hot",

"num_failed_logins",

"logged_in",

"num_compromised",

"root_shell",

"su_attempted",

"num_root",

98

Intrusion Detection System using Feature Ranking and GWO

"num_file_creations",

"num_shells",

"num_access_files",

"num_outbound_cmds",

"is_host_login",

"is_guest_login"]

time_based_traffic_features = ["count",

"srv_count",

"serror_rate",

"srv_serror_rate",

"rerror_rate",

"srv_rerror_rate",

"same_srv_rate",

"diff_srv_rate",

"srv_diff_host_rate"]

host_based_traffic_features = ["dst_host_count",

"dst_host_srv_count",

"dst_host_same_srv_rate",

"dst_host_diff_srv_rate",

"dst_host_same_src_port_rate",

"dst_host_srv_diff_host_rate",

"dst_host_serror_rate",

"dst_host_srv_serror_rate",

"dst_host_rerror_rate",

"dst_host_srv_rerror_rate"]

attr_names = basic_features + content_features +␣

↪→time_based_traffic_features + host_based_traffic_features

col_names = attr_names + ["label", "difficulty"]

Then, we define the mapping of NSL-KDD to five categories

99

Intrusion Detection System using Feature Ranking and GWO

[]: # Normal --> 0, DoS --> 1, Probe --> 2, R2L --> 3, U2R --> 4

five_labels_dict = {'normal': 0, 'neptune': 1, 'back': 1, 'land':␣

↪→1, 'pod': 1, 'smurf': 1, 'teardrop': 1,

'mailbomb': 1,

'apache2': 1,

'processtable': 1, 'udpstorm': 1, 'worm': 1,

'ipsweep': 2, 'nmap': 2, 'portsweep': 2,␣

↪→'satan': 2, 'mscan': 2, 'saint': 2,

'ftp_write': 3, 'guess_passwd': 3, 'imap': 3,␣

↪→'multihop': 3, 'phf': 3, 'spy': 3,

'warezclient': 3,

'warezmaster': 3, 'sendmail': 3, 'named': 3,␣

↪→'snmpgetattack': 3, 'snmpguess': 3, 'xlock': 3,

'xsnoop': 3,

'httptunnel': 3,

'buffer_overflow': 4, 'loadmodule': 4, 'perl':␣

↪→4, 'rootkit': 4, 'ps': 4, 'sqlattack': 4,

'xterm': 4}

Here we define the function that will read NSL-KDD, shuffle the data

and split it to 70% training and 30% testing

[]: def read_data(multi_class, rand, test_size=0.3):

df = feather.read_dataframe("KDDTrain+.feather")

df_test = feather.read_dataframe("KDDTest+.feather")

df.drop("difficulty", axis=1, inplace=True)

df_test.drop("difficulty", axis=1, inplace=True)

X_train_original = df.drop('label', axis=1)

X_test_original = df_test.drop('label', axis=1)

X_final = X_train_original.append(X_test_original)

100

Intrusion Detection System using Feature Ranking and GWO

y_train_original = df['label'].replace(five_labels_dict).

↪→values.astype('int').ravel()

y_test_original = df_test['label'].replace(five_labels_dict).

↪→values.astype('int').ravel()

y_final = np.concatenate((y_train_original, y_test_original))

X_train, X_test, y_train, y_test = train_test_split(X_final,␣

↪→y_final, test_size=test_size, random_state=rand,␣

↪→stratify=y_final)

if not multi_class:

y_train[y_train > 0] = 1

y_test[y_test > 0] = 1

return X_train, X_test, y_train, y_test

This is the implementation of PDF used for transforming nominal fea-

tures to numerical

[]: from sklearn.base import BaseEstimator, TransformerMixin

def column_pdf(df, column_name):

column_histogram = df[column_name].value_counts()

column_sum = column_histogram.sum()

return column_histogram.transform(lambda s: s / column_sum)

class PdfTransformer(BaseEstimator, TransformerMixin):

def __init__(self):

super().__init__()

101

Intrusion Detection System using Feature Ranking and GWO

def fit(self, X, y=None):

self.columnns_pdfs = {clmn: column_pdf(X, clmn).to_dict()␣

↪→for clmn, _ in X.iteritems()}

return self

def transform(self, X, y='', copy=None):

for clmn, _ in X.iteritems():

X[clmn] = X[clmn].map(self.columnns_pdfs[clmn]).

↪→fillna(0)

return X

[]: import random

import time

from joblib import Parallel, delayed

from skfuzzy.membership import sigmf

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

This class will contain all the attributes we want from GWO

[]: class solution:

def __init__(self):

self.best = 0

self.bestIndividual = []

self.convergence = []

self.features = []

self.optimizer = ""

self.objfname = ""

self.startTime = 0

self.endTime = 0

self.executionTime = 0

102

Intrusion Detection System using Feature Ranking and GWO

self.lb = 0

self.ub = 0

self.dim = 0

self.popnum = 0

self.maxiers = 0

This is the cross over used in GWO

[]: def cross_over(x_1, x_2, x_3):

r = random.random()

if r < 0.333:

return x_1

elif r < 0.6666:

return x_2

else:

return x_3

And this is the fitness function used in GWO

[]: def fitness_func(args):

positions, X_train, y_train, X_test, y_test = args

sz_w = 0.01

"""

Fitness function to be passed to bGWO

:param x: current positions for a specific search agent in␣

↪→bGWO

:return: fitness value

"""

current_selected_features_indexes = np.where(positions == 1)[0]

X_train_current = np.copy(X_train[:,␣

↪→current_selected_features_indexes[

103

Intrusion Detection System using Feature Ranking and GWO

0:]]) # slice training␣

↪→data based on current_selected_features_indexes

X_test_current = np.copy(X_test[:,␣

↪→current_selected_features_indexes[

0:]]) # slice testing data␣

↪→based on current_selected_features_indexes

a case where no features where selected, the fitness will␣

↪→be inf, indicating a bad classification

if np.sum(positions) == 0:

return float("inf")

bgwo_fitness_classifier = RandomForestClassifier(n_jobs=-1,␣

↪→n_estimators=5)

bgwo_fitness_classifier = bgwo_fitness_classifier.

↪→fit(X_train_current, y_train)

predict the class labels of test data

y_predict = bgwo_fitness_classifier.predict(X_test_current)

success_rate = accuracy_score(y_test, y_predict)

return (1 - sz_w) * (1 - success_rate) + sz_w * np.

↪→sum(positions) / np.alen(positions)

And this the implementation of BGWO (inspired from the original imple-

mentation in Matlab and from GWO implementation in EvoloPy repos-

itory)

[]: def BGWO(X, y, search_agents_no, max_iter, test_size=0.30,␣

↪→random_state=42):

dim = X.shape[1]

X_train, X_test, y_train, y_test = train_test_split(X, y,␣

↪→test_size=test_size, random_state=random_state)

lb = 0

104

Intrusion Detection System using Feature Ranking and GWO

ub = 1

mb = float((lb + ub) / 2)

initialize alpha, beta, and delta_pos

alpha_pos = np.zeros(dim)

alpha_score = float("inf")

beta_pos = np.zeros(dim)

beta_score = float("inf")

delta_pos = np.zeros(dim)

delta_score = float("inf")

Initialize the positions of search agents

positions = np.random.uniform(lb, ub, (search_agents_no, dim))␣

↪→* (ub - lb) + lb

make sure that all positions are 0 and 1

positions = positions > 0.5

positions = positions.astype(int)

convergence_curve = np.zeros(max_iter)

features_curve = np.zeros(max_iter)

s = solution()

timer_start = time.time()

s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S")

Main loop

for l in range(0, max_iter):

nargs = [(positions[i, :].copy(), X_train, y_train,␣

↪→X_test, y_test) for i in range(0, search_agents_no)]

105

Intrusion Detection System using Feature Ranking and GWO

fitness_list = Parallel(n_jobs=-1,␣

↪→prefer='threads')(delayed(fitness_func)(arg) for arg in nargs)

for i in range(0, search_agents_no):

fitness = fitness_list[i]

Update Alpha, Beta, and Delta

if fitness < alpha_score:

alpha_score = fitness # Update alpha

alpha_pos = positions[i, :].copy()

s.bestIndividual = alpha_pos # always store best␣

↪→solution so far

if alpha_score < fitness < beta_score:

beta_score = fitness # Update beta

beta_pos = positions[i, :].copy()

if alpha_score < fitness < delta_score and fitness >␣

↪→beta_score:

delta_score = fitness # Update delta

delta_pos = positions[i, :].copy()

a = 2 - l * (2 / max_iter) # a decreases linearly from 2␣

↪→to 0

Update the Position of search agents including omegas

for i in range(0, search_agents_no):

for j in range(0, dim):

r1 = random.random() # r1 is a random number in␣

↪→[0,1]

r2 = random.random() # r2 is a random number in␣

↪→[0,1]

106

Intrusion Detection System using Feature Ranking and GWO

a1 = 2 * a * r1 - a # Equation (3.3)

c1 = 2 * r2 # Equation (3.4)

d_alpha = abs(c1 * alpha_pos[j] - positions[i, j])␣

↪→ # Equation (3.5)-part 1

v1 = sigmf(-a1 * d_alpha, 0.5, 10) # apply␣

↪→sigmoid on -a1 * d_alpha

v1 = 0 if v1 < np.random.rand() else 1

x1 = alpha_pos[j] + v1 # Equation (3.6)-part 1

x1 = int(x1 >= 1)

r1 = random.random() # r1 is a random number in␣

↪→[0,1]

r2 = random.random() # r2 is a random number in␣

↪→[0,1]

a2 = 2 * a * r1 - a # Equation (3.3)

c2 = 2 * r2 # Equation (3.4)

d_beta = abs(c2 * beta_pos[j] - positions[i, j]) ␣

↪→# Equation (3.5)-part 2

v1 = sigmf(-a2 * d_beta, 0.5, 10) # apply sigmoid␣

↪→on -a2 * d_beta

v1 = 0 if v1 < np.random.rand() else 1

x2 = beta_pos[j] + v1 # Equation (3.6)-part 2

x2 = int(x2 >= 1)

r1 = random.random()

r2 = random.random()

a3 = 2 * a * r1 - a # Equation (3.3)

107

Intrusion Detection System using Feature Ranking and GWO

c3 = 2 * r2 # Equation (3.4)

d_delta = abs(c3 * delta_pos[j] - positions[i, j])␣

↪→ # Equation (3.5)-part 3

v1 = sigmf(-a3 * d_delta, 0.5, 10) # apply␣

↪→sigmoid on -a3 * d_delta

v1 = 0 if v1 < np.random.rand() else 1

x3 = delta_pos[j] + v1 # Equation (3.6)-part 2

x3 = int(x3 >= 1)

positions[i, j] = cross_over(x1, x2, x3)

convergence_curve[l] = alpha_score

features_curve[l] = np.sum(alpha_pos)

timer_end = time.time()

s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S")

s.executionTime = timer_end - timer_start

s.convergence = convergence_curve

s.features = features_curve

s.optimizer = "GWO"

s.objfname = fitness_func.__name__

return s

We define BGWO as a classifier following sklearn pattern

[]: from sklearn.feature_selection.base import SelectorMixin

class BgwoClassifier(BaseEstimator, SelectorMixin):

def __init__(self, population_size, iterations, test_size,␣

↪→random_state):

108

Intrusion Detection System using Feature Ranking and GWO

self.population_size = population_size

self.iterations = iterations

self.test_size = test_size

self.random_state = random_state

def fit(self, X, y):

solution = WBGWO(X, y, self.population_size, self.

↪→iterations)

solution = BGWO(X, y, self.population_size, self.

↪→iterations, self.test_size, self.random_state)

sol = solution.bestIndividual.astype(int)

is_empty_solution = np.sum(sol) == 0

select all features in case there was no solution

selected_features_indexes = np.where(sol == (0 if␣

↪→is_empty_solution else 1))[0]

self.support_ = np.array(sol, dtype=bool)

self.n_features_ = np.alen(selected_features_indexes)

self.selected_features_indexes_ = selected_features_indexes

self.convergence_ = solution.convergence

self.features_curve_ = solution.features

return self

def _get_support_mask(self):

return self.support_

[]: from sklearn.compose import ColumnTransformer

from sklearn.feature_selection import f_classif, SelectPercentile

from sklearn.metrics import recall_score, precision_score, f1_score

from sklearn.metrics import confusion_matrix

109

Intrusion Detection System using Feature Ranking and GWO

from sklearn.multiclass import OneVsRestClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import MinMaxScaler

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

These are the random numbers used to perform 30 experiments on NSL-

KDD dataset

[]: split_randoms = [91, 568, 130, 416, 948, 314, 41, 294, 157, 777,␣

↪→298, 127, 450, 966, 597, 236, 351, 109, 510, 660,

490, 554, 814, 287, 971, 981, 333, 30, 555, 735]

These are the five classifiers used in the experiments

[]: classifiers = [(DecisionTreeClassifier, DecisionTreeClassifier()),

(GaussianNB, GaussianNB()),

(MLPClassifier, MLPClassifier(verbose=True)),

(KNeighborsClassifier,␣

↪→KNeighborsClassifier(n_jobs=-1)),

(SVC, SVC(verbose=True))]

These are the main parameters that control the proposed approach

[]: # Algorithm parameters

multi_class = True

use_selector = True

use_gwo = True

percentile = 50

population_size = 20

max_iterations = 10

110

Intrusion Detection System using Feature Ranking and GWO

classifier_inst = DecisionTreeClassifier()

if multi_class:

enable parallelism

classifier_instance = OneVsRestClassifier(classifier_inst,␣

↪→n_jobs=-1)

First step in the proposed approach: split the data into 70% training and

30% testing

[]: # Read inputs

X_train, X_test, y_train, y_test =␣

↪→read_data(multi_class=multi_class, rand=split_randoms[0])

Second step in the proposed approach: Preprocess training and testing

datasets

[]: # Prepare nominal features transformation and numerical features␣

↪→scaling

boolean_features_set = {'land', 'logged_in', 'is_host_login',␣

↪→'is_guest_login'}

boolean_features = list(boolean_features_set.

↪→intersection(set(X_train.columns.to_list())))

numerical_ix = X_train.select_dtypes(include=['int64', 'float64']).

↪→columns.drop(boolean_features)

categorical_ix = X_train.select_dtypes(include=['object']).columns

clmn_transformer = ColumnTransformer(transformers=[('num',␣

↪→MinMaxScaler(), numerical_ix), # numerical features scaling

('cat',␣

↪→PdfTransformer(), categorical_ix)], # nominal features␣

↪→transformation

remainder='passthrough',␣

↪→n_jobs=-1) # keep the reset as is

111

Intrusion Detection System using Feature Ranking and GWO

Prepare preprocessing pipeline

pipeline_steps = [('clmn_transformer', clmn_transformer)]

if use_selector:

selector_classifier = SelectPercentile(f_classif,␣

↪→percentile=percentile)

pipeline_steps.append(('selector_classifier',␣

↪→selector_classifier))

if use_gwo:

bgwo_classifier = BgwoClassifier(population_size,␣

↪→max_iterations, 0.10, 22)

pipeline_steps.append(('bgwo_classifier', bgwo_classifier))

preprocessing_pipeline = Pipeline(pipeline_steps, verbose=True)

Train preprocessing pipeline, and preprocess training data

X_train = preprocessing_pipeline.fit_transform(X_train, y_train)

Preprocess testing data

X_test = preprocessing_pipeline.transform(X_test)

Third step in the proposed approach: perform classification training and

testing

[]: # Train the classifier

classifier_inst = classifier_inst.fit(X_train, y_train)

Test the classifier

y_pred_curr = classifier_inst.predict(X_test)

Print all the metrics

[]: # Print the metrics

if multi_class:

conf_matrix = confusion_matrix(y_test, y_pred_curr)

FP = conf_matrix.sum(axis=0) - np.diag(conf_matrix)

112

Intrusion Detection System using Feature Ranking and GWO

FN = conf_matrix.sum(axis=1) - np.diag(conf_matrix)

TP = np.diag(conf_matrix)

TN = conf_matrix.sum() - (FP + FN + TP)

fp = FP.astype(float)

fn = FN.astype(float)

tp = TP.astype(float)

tn = TN.astype(float)

DoS -> 1, Probe -> 2, R2L -> 3, U2R -> 4

accuracy = accuracy_score(y_test, y_pred_curr)

recall_score_arr = recall_score(y_test, y_pred_curr,␣

↪→average=None)

false_alarm_rate_arr = fp / (fp + tn)

precision_score_arr = precision_score(y_test, y_pred_curr,␣

↪→average=None)

f1_score_arr = f1_score(y_test, y_pred_curr, average=None)

print('Accuracy: {acc}'.format(acc=accuracy))

normal_detection_rate = recall_score_arr[0]

normal_false_alarm_rate = false_alarm_rate_arr[0]

normal_precision = precision_score_arr[0]

normal_f1 = f1_score_arr[0]

print('Normal DR: {recall}, Normal FAR: {far}, Normal␣

↪→Precision: {precision}, Normal f1: {f1}'

.format(recall=normal_detection_rate,

precision=normal_precision,

f1=normal_f1,

far=normal_false_alarm_rate))

113

Intrusion Detection System using Feature Ranking and GWO

dos_detection_rate = recall_score_arr[1]

dos_false_alarm_rate = false_alarm_rate_arr[1]

dos_precision = precision_score_arr[1]

dos_f1 = f1_score_arr[1]

print('DoS DR: {recall}, DoS FAR: {far}, DoS Precision:␣

↪→{precision}, DoS f1: {f1}'

.format(recall=dos_detection_rate,

precision=dos_precision,

f1=dos_f1,

far=dos_false_alarm_rate))

probe_detection_rate = recall_score_arr[2]

probe_false_alarm_rate = false_alarm_rate_arr[2]

probe_precision = precision_score_arr[2]

probe_f1 = f1_score_arr[2]

print('Probe DR: {recall}, Probe FAR: {far}, Probe Precision:␣

↪→{precision}, Probe f1: {f1}'

.format(recall=probe_detection_rate,

precision=probe_precision,

f1=probe_f1,

far=probe_false_alarm_rate))

r2l_detection_rate = recall_score_arr[3]

r2l_false_alarm_rate = false_alarm_rate_arr[3]

r2l_precision = precision_score_arr[3]

r2l_f1 = f1_score_arr[3]

print('R2L DR: {recall}, R2L FAR: {far}, R2L Precision:␣

↪→{precision}, R2L f1: {f1}'

114

Intrusion Detection System using Feature Ranking and GWO

.format(recall=r2l_detection_rate,

precision=r2l_precision,

f1=r2l_f1,

far=r2l_false_alarm_rate))

u2r_detection_rate = recall_score_arr[4]

u2r_false_alarm_rate = false_alarm_rate_arr[4]

u2r_precision = precision_score_arr[4]

u2r_f1 = f1_score_arr[4]

print('U2R DR: {recall}, U2R FAR: {far}, U2R Precision:␣

↪→{precision}, U2R f1: {f1}'

.format(recall=u2r_detection_rate,

precision=u2r_precision,

f1=u2r_f1,

far=u2r_false_alarm_rate))

else:

conf_matrix = confusion_matrix(y_test, y_pred_curr)

tn = conf_matrix[0, 0]

fn = conf_matrix[1, 0]

tp = conf_matrix[1, 1]

fp = conf_matrix[0, 1]

accuracy = accuracy_score(y_test, y_pred_curr)

detection_rate = recall_score(y_test, y_pred_curr)

false_alarm_rate = fp / (fp + tn)

precision = precision_score(y_test, y_pred_curr)

f1 = f1_score(y_test, y_pred_curr)

print('Accuracy: {acc}, DR: {recall}, FAR: {far}, Precision:␣

↪→{precision}, f1: {f1}'

.format(acc=accuracy,

recall=detection_rate,

115

Intrusion Detection System using Feature Ranking and GWO

precision=precision,

f1=f1,

far=false_alarm_rate))

116

	Introduction
	Intrusion Detection System (IDS)
	Machine Learning in Anomaly-based Detection
	Problem Statement and Motivation
	Thesis Outline

	Foundation and Literature Review
	Theoretical Foundation
	Feature Selection
	Filter Approaches
	Wrapper Approaches
	Embedded Approaches
	Hybrid Approaches

	Metaheursitc Algorithms
	Single-based Metaheuristic Algorithms
	Population-based Metaheuristic Algorithms

	Related Work
	Summary

	Hybrid Feature Selection using Feature Ranking and GWO
	Overview
	NSL-KDD
	Overview
	Description

	Nominal Features Transformation using Probability Density Function (PDF)
	Numerical Features Normalization using Min-Max
	Feature Ranking using ANOVA F-value
	Feature Selection using BGWO
	Multi-class Classification using One-vs-rest Strategy
	Summary

	Experimental Setup and Evaluation Metrics
	Methodology
	Environment and Implementation Tools
	Evaluation Metrics

	Result Analysis
	Parameters Tuning for GWO
	Classification Performance and Selected Features
	Summary

	Conclusion and Future Work
	References
	Implementation

