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Abstract

Intrusion detection system (IDS) is an important component in modern network
environments. An IDS analyzes network traffic to detect abnormal activities. A
challenging task in IDS is the ability to update itself and detect anomalies in short
time. Therefore, many machine learning techniques have been applied on IDS.
But they still use many attributes of network traffic which sometimes decreases the
detection rate and always increases detection time.

In this study, we propose a hybrid feature selection approach to address these
challenges. The first stage of the proposed approach is feature ranking using ANOVA
F-value. In this stage, a percentage of the top ranked features will be selected. In
the second stage, a wrapper approach with GWO as a search strategy, and Random
Forest for evaluation is used. In this stage, the reduced dataset from the first stage
is the input, and the output is an optimal subset of features.

We tested the proposed approach on NSL-KDD dataset, and compared its per-
formance with the performance of few classifiers without feature selection. We were
able to achieve a dimensionality reduction of 68%, while achieving accuracy, detec-
tion rate, and false alarm rate similar to those of the chosen classifiers. Moreover,
we reduced the search time of GWO by 18%. Moreover, we were able to reduce
the training time of KNN and SVM by 77% and 62% respectively in multi-class
classification, and by 59% and 68% respectively in binary classification. Similarly,
the testing time of KNN and SVM was reduced by 93% and 46% respectively in
multi-class classification, and and by 89% and 48% respectively in binary classifica-

tion.
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Chapter 1

Introduction

Nowadays, data is being generated, collected, and stored in high volumes and
in almost all fields. This high rate of data generation not only requires advanced
storage techniques, but it also requires protecting it against unauthorized access.
Such protection has become more important, because we are in the age of cloud
and social media. These technologies are now collecting sensitive data, including
personal and financial data. In fact, it is expected that by 2022, the amount of data
being stored by different cloud providers, such as Google, AWS, and Facebook will

be increased hundred times [1].

Even though the recent advancements in information and communications tech-
nology (ICT) enabled many storage and security technologies to be applicable, they
also played a role in increasing the number of network and cyber attacks. A recent
statistics on cyber security [2] showed that it is expected to have three trillion cyber

attacks by 2021 with high probability of zero-day attacks.

Therefore, and due to the increased number of people that use the internet
in daily basis, there is an increased need for suitable protection systems. There
have been some security mechanisms, such as data encryption, user authentication,
anti-virus, and firewall. But, these traditional mechanisms failed to cope with the
variety of attack patterns [3]. Accordingly, intrusion detection system (IDS) became

a necessity.
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1.1 Intrusion Detection System (IDS)

An intrusion detection system (IDS) is a system that automatically checks and
analyzes network flow to detect and prevent abnormal activities [4]. This includes
monitoring both user and system behaviors, such as the unauthorized access to
network resources, and the analysis of network packet fields (e.g. IP address, flag,
ports) [5]. Upon detecting an intrusion, the IDS alarms it to the management [6].

Based on the deployment of the IDS, it can be categorized into Host based IDS
(HIDS) and Network based IDS (NIDS) [5]. As the name indicates, HIDS is installed
on the host computer to check and analyze the log files after an intrusion happens.
Therefore, HIDS is not useful for large network environments [4]. On the other
hand, NIDS is installed on a network management system. NIDS works in real time
to monitor network traffic, and it uses detection algorithms to identify potential
intrusions.

Furthermore, an IDS can be classified based on the detection mechanism to
knowledge-based [4] and behavior-based [5]. In knowledge-based (or signature-
based) detection, the IDS uses misuse detection to detect known attacks by compar-
ing between received packets and a predefined set of collected data (e.g. signature
files). While in behavior-based (or anomaly-based) detection, the IDS uses anomaly
detection to detect unknown attacks by comparing the system state with the nor-
mal activity profile it builds. Behavior-based detection suffers from high false alarm
rates. Despite that, it is still considered better than knowledge-based detection as
it can detect novel or zero-day attacks. Hence, anomaly-based detection got more

attention during the past twenty years.

1.2 Machine Learning in Anomaly-based Detec-
tion

The main challenge in anomaly-based IDS is to enable it to update itself and de-
tect attacks in short time [4]. Consequently, there have been many research efforts
to apply machine learning techniques in intrusion detection. These techniques in-

cluded few semi-supervised approaches [7], and many supervised approaches [8] [9].

11
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These approaches were applied to common datasets in IDS, such as: NSL-KDD [10],
ISCX-IDS-2012 [11] and CIC-IDS-2017 [12].

As other datasets in different fields, IDS datasets usually contain large number of
attributes or features. Some of these features are irrelevant and/or redundant. High
dimensionality affects the performance of any machine learning technique. And it
is called curse of dimensionality. The most common way to address this issue is

through dimensionality reduction techniques.

Feature selection is one of the widely used dimensionality reduction techniques.
Feature selection is the process of selecting a subset of features according to certain
criteria [13]. It is performed as a preprocessing step, and it improves the mining

performance.

There are two major aspects to be considered when designing a feature selec-
tion method: evaluation and generation (search). From evaluation perspective,
filter-based and wrapper-based approaches are used. Filter-based methods evalu-
ate features independently of any learning algorithm, just relying on characteristics
of data [14] [15]. Examples of filter-based method include Fisher Score [16], and
ANOVA F-value [17]. Wrapper-based methods evaluate features based on a learning
algorithm [18]. Examples of wrapper-based method include the LVW algorithm [19]
and FVBRM [20]. Due to the lack of a learning algorithm, filter methods usually
perform faster than wrapper methods, however, the subset of selected features in

filter methods may not represent the optimal subset for classification [15].

From search perspective, the search for an optimal set of features in a high di-
mensional space is challenging and most of the time it is not practical. Metaheursitc
algorithms are used as a solution to this problem. A metaheuristic algorithm is an
optimization problem suitable for real-world problems, because it searches for an
optimal or near-optimal solution by making some reasonable assumptions on the
problem. Some metaheuristic algorithms were used in IDS, such as the usage of

random mutation hill climbing in [18] and the usage of tabu search in [21].

Many metaheuristic algorithms take a lot of time to converge towards a solution
and they may stuck at a local optima. As a consequence, most researchers prefer
working with two categories of metaheuristic algorithms: evolutionary computation

(EC) algorithms and swarm intelligence (SI). Evolutionary computation (EC) algo-
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rithms are based on biological evolution and natural selection techniques. Genetic
algorithm (GA) [22] is a common EC algorithm. Swarm intelligence algorithms,
on the other hand, are inspired from nature phenomena and social behavior of ani-
mals, birds, wolves, etc [23]. Particle Swarm Optimization (PSO) [24], Ant Colony
Optimization (ACO) [25], Firefly Algorithm (FA) [26] are common SI algorithms.
More recently, a promising SI algorithm emerged. This algorithm is call Grey wolf
optimization (GWO) [27].

Grey wolf optimization (GWO) is a swarm intelligence algorithm that imitates the
hunting process of a pack of grey wolves in nature [28]. It has shown faster con-
version than PSO along with a good balance between exploration and exploitation.
This means that it well manages the trade-off between local optima and global op-
tima. To apply GWO in feature selection, Emary et al. [23] developed a binary
version that has been used in several IDSs [29] [30].

1.3 Problem Statement and Motivation

The first challenge in intrusion detection systems is to reduce the number of
features and increase the detection accuracy. We have reviewed in the previous
section feature selection as a solution to this problem. The second challenge is to
have short training time, and a real-time or near real-time prediction.

Although there have been many studies on IDS to address the first challenge, few of
them considered the second challenge. So, there are two main challenges to address

in this study:

1. Reduce the data dimensionality to have short training time, and a real-time

or near real-time detection.

2. Achieve high detection rate, high accuracy, and low false alarm rate at the

same time.

In this study, we propose a hybrid feature selection approach to address these
challenges. A hybrid approach is a two-stage feature selection approach. In the first
stage, a filter method is used to reduce the data dimensionality. The reduced data

is the input to the second stage. In the second stage, a wrapper method is used

13
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to select the optimal feature subset. The benefit of this approach is that it offers
the fast computation of filter methods and the optimization capabilities of wrapper
methods.

In the first stage of the proposed approach, we will use a filter method called Analysis
of Variance (ANOVA) F-value, which is a well-known feature ranking method. In
the second stage, we will use a wrapper method that uses binary GWO (BGWO)
as a search strategy, and a Random Forest classifier for evaluation.

To assist on the performance of the proposed approach, we will consider NSL-
KDD dataset. In the future work, we will consider larger datasets, such as CIC-
IDS-2017 and CSE-CIC-IDS-2018. Moreover, we will compare the performance of
our approach against the performance without the proposed feature selection, and
the performance when GWO is used alone. We will use five common classifiers in
IDS literature: Decision Tree, SVM, KNN, ANN, and Naive Bayes. And finally, we
will consider both multi-class classification (using one-vs-rest strategy) and binary
classification.

Throughout the experiments, we have noticed that Decision Tree and ANN clas-
sifiers are already performing well without feature selection. While, SVM and KNN
are taking long time to do the training and testing. On the other hand, Naive Bayes
is the worst performing classifier.

Using the proposed approach, we have been able to achieve the following:
« Dimensionality reduction of 68% from 41 to 13 features.
» Reduce GWO search time by 18%.
« Improve Naive Bayes overall accuracy in multi-class classification.

o Reduce the training time of KNN by 77% in multi-class classification, and by

59% in binary classification.

o Reduce the testing time of KNN by 93% in multi-class classification, and by

89% in binary classification.

e Reduce the training time of SVM by 62% in multi-class classification, and by

68% in binary classification.

14
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o Reduce the testing time of SVM by 46% in multi-class classification, and by

48% in binary classification.

o Almost preserve the overall accuracy, detection rates and false alarm rates of
the other classifiers. In fact, our numbers were not better than the classifiers
without feature selection, but at least they were around with less time and

less features.

1.4 Thesis Outline

o In Chapter 2, we will present a theoretical background on machine learning,
feature selection and metaheuristic algorithms. Then, we will discuss few

studies that used different machine learning approaches on IDS.

o In Chapter 3, we will discuss each step of our proposed approach along with

mathematical foundations, and explanatory examples.

e In Chapter 4, we will describe the methodology, environment, and tools we
used to setup and implement the experiments. Then, we will illustrate the

evaluation metrics used in multi-class classification and binary classification.

e In Chapter 5, we will present and analyze experiments results, along with

justification on chosen parameters for GWO and ANOVA F-value.

o And finally, we will present conclusion and future work in Chapter 6.

15



Chapter 2

Foundation and Literature Review

In this chapter, we first present a theoretical background on machine learning,
feature selection and metaheuristic algorithms. Then, we present the related work

in intrusion detection systems.

2.1 Theoretical Foundation

Machine learning is a special branch of artificial intelligence that makes a decision
or predicts an output by acquiring knowledge from existing input data. Arthur
Samuel defined machine learning in 1959 as a study that allows computers to learn
knowledge without being programmed. There are three main categories for machine

learning techniques:

1. Supervised Learning: also called Classification. In supervised learning, the in-
put training data is already labeled, or in other terms already classified. Some
of the most popular supervised learning algorithms are: Bayesian Networks,
Decision Trees, Artificial Neural Networks, K Nearest Neighbor, and Support

Vector Machine. We will come to each of those in short.

2. Unsupervised Learning: also called Clustering. Unlike supervised learning,
input training data here is unlabeled. Some of the most popular unsupervised
learning algorithms are: K-means clustering, Apriori algorithm, and Fuzzy

clustering.

3. Semi-supervised Learning: this category makes use of labeled and unlabeled

16
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data. Basically, labeled samples will be used to learn the classes, and unlabeled
samples will be used to find the suitable separation between classes. Graph-

based and heuristic-based algorithms are used in this category.
In this study, we will use the following supervised learning algorithms (classifiers):

A. Support Vector Machine (SVM)

A Support Vector Machine (SVM) [31] is a supervised machine learning algo-
rithm used for classification and regression purposes. The basic idea in SVM
is to find a hyperplane that best divides a dataset into multiple classes.

A hyperplane can be a line as in Figure 2.1 [32], but this is considered a simple
example with only two dimensions that do not overlap. In real applications,
SVM is used with any number of dimensions, and therefore, a hyperplane is
considered a generalization of a plane where it can be a point in one dimension,

a line in two dimensions and a plane in three dimensions [33] [34].

Figure 2.1: Hyperplane example

B. K-Nearest Neighbor (KNN)
K-nearest neighbor (KNN) [35] is a supervised learning algorithm commonly
used for classification. When classifying an instance sample, KNN computes
the minimum distance from that instance to the training sample. Then, the
instance sample is classified based on the majority of the K-nearest neighbor

category [23].

C. Decision Tree
A decision tree is often represented as a flowchart tree where each internal

node represents an attribute, and each branch represents a value or range of

17
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this attribute and each leaf node represents a class label. This is depicted in

Figure 2.2 [36].

Figure 2.2: Decision tree example

D. Naive Bayes
Naive Bayes is based on Bayes’ theorem of posterior probability with the
assumption of class-conditional independence [36]. This means that it assumes
that the impact of an attribute on a class is not affected by the values of other
attributes. Therefore, Naive Bayes is usually used because of its simplicity
and fast computation [37]. However, this may come at the cost of having low

accuracy.

E. Artificial Neural Network (ANN)
The idea of Artificial Neural Network (ANN) came from the human brain [37].
Each node (or neuron) in the network is capable of perception, pattern recog-
nition and any other function. The interconnections between the nodes have
weights. When a pattern is represented to the input layer of the neural net-
work, it passes this pattern based on the weights to another hidden layer for
processing. There can be as many as needed hidden layers. At the end, the
last hidden layer passes its processing results to the output layer, which takes

the classification decision.

This was a general overview on machine learning, its techniques and some of the well-
known supervised algorithms. In the next subsection, we discuss feature selection
which is an important topic when classifying large datasets. In the last subsection,

we discuss metaheuristic algorithms showing their vital role in feature selection.
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2.1.1 Feature Selection

Nowadays, data has become essential in every field, and it is increasing dramat-
ically on daily basis. Intrusion detection is no exception. In fact, the recent efforts
made by the Canadian Institute for Cybersecurity! emphasized the importance of
having large datasets to simulate real-life network traffic. Classifying such volumes
of data accurately and near real-time is a challenging task for machine learning algo-
rithms. Additionally, such data usually have many attributes to analyze. Not only
this causes computation time and space complexities, but it also cause overfitting
problems. This is known in the literature as curse of dimensionality [15].

The most well-known way to address this challenge is to use dimensionality
reduction techniques. These techniques are mainly categorized into: feature ex-
traction and feature selection. In feature extraction, a low dimensional feature
space is constructed either linearly or non-linearly from the original feature space.
Principle Component Analysis (PCA) [38] is the most popular feature extraction
method. There are other methods as well, such as: Independent Component Anal-
ysis (ICA) [39], Linear Discriminant Analysis (LDA) [40], and Locally Linear Em-
bedding (LLE) [41]. In contrast, feature selection removes redundant and irrelevant
features ending up with the subset of relevant features. In real world problems,
feature selection is more preferred than feature extraction because it offers better
readability and interpretability [15].

Feature selection approaches are mainly categorized as: filter approaches, wrapper

approaches, embedded approaches, and hybrid approaches.

2.1.1.1 Filter Approaches

Filter feature selection methods evaluate features without utilizing any classi-
fication algorithms, just relying on the characteristics of the data [42]. Typically,
filter algorithms go through two steps: feature ranking based on certain criteria (e.g.
using statistical-based techniques), and selecting the highest ranked features based
on a certain threshold. In the first step, features are evaluated on either a univari-
ate or a multivariate schemes [15]. In the univariate scheme, each feature is ranked

independently of the feature space, while the multivariate scheme evaluates features

thttps://www.unb.ca/cic/
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in a batch way. Some of the common filter methods include: Fisher Score [16],
ReliefF [43], ANOVA F-value [17], Chi-square [44], and Gini Index [45].

Apparently, filter methods are computationally fast. However, they do not guarantee
selecting the optimal or near-optimal subset of features that maximizes classification

performance.

2.1.1.2 Wrapper Approaches

In contrary to filter methods, wrapper methods depend on a learning algorithm
to evaluate the quality of the selected features [15]. There are two main concepts
in any wrapper algorithm: search strategy and evaluation criteria. To clarify, any
wrapper algorithm works iteratively where it first searches for a subset of features,
then it evaluates the performance of this subset to check if it meets the needed qual-
ity. If not, the iteration continues until either finding the optimal subset or reaching
a maximum iteration. Search strategies in typical wrapper methods often follows ei-
ther a recursive feature elimination scheme or a sequential feature selection scheme.
Common wrapper methods in IDS are: Feature Vitality Based Reduction Method
(FVBRM) [20], Sequential Forward Selection (SFS), Best First Search (BFS) and
Consistency Subset Eval (CSE).

Even though wrapper methods achieve better classification performance than fil-
ter method, they still suffer from high computation, overfitting and large search

spaces [42].

2.1.1.3 Embedded Approaches

On the one hand, filter methods do not incorporate learning. On the other hand,
wrapper methods suffer from high computation and large search spaces. Therefore,
Embedded methods offer a trade-off solution between filter methods and wrapper
methods [15]. Embedded methods are similar to wrapper methods, except that
they consider feature selection within the learning algorithm. In other words, these
methods do not search iteratively for the best subset. Rather, they evaluate the
importance of each feature to the prediction process. Most widely used embedded
methods are regularization-based, such as LASSO regression [46], and tree-based

such as decision trees.
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2.1.1.4 Hybrid Approaches

Hybrid approaches are two-stage feature selection methods [42]. In the first
stage, a filter method is applied to select a subset of features. In the second stage,
a wrapper method is used to select the optimal subset of features from the first
subset. The main benefit of these approaches is that they take advantage of the
fast computation of filter methods to reduce the search space of wrapper methods.
Consequently, wrapper methods become faster and they do not overfit. In this study,

we are adopting this approach as will be explained in Chapter 3.

2.1.2 Metaheursitc Algorithms

Selecting the subset of features that maximizes classification performance can
be seen as an optimization problem. But since we are dealing with this problem in
intrusion detection context, which is a real-world context, there are few challenges
to take into consideration. First, it is usual to have insufficient or imperfect infor-
mation. Second, it can be computationally expensive to reach the exact optimal
solution.

Taking these challenges into consideration, it is recommended to use what is
called metaheurisitc algorithms for such problems [42]. In simple terms, heuristic
means to find or discover by trial-and-error. This means that metaheuristic is a
higher-level heursitic that guides other heuristics to reach solutions beyond the local
optimum [47].

Compared to other optimization algorithms, metaheuristic algorithms are suitable
for real-world problems, because they tend to simplify calculations by making rea-
sonable assumptions on the optimization problem [42]. The idea is to find a math-
ematical model that represents the problem. Then, the search for the best solution
starts by proposing an initial solution out of the mathematical model. After that,
the search process is guided by the information collected during the search itself.
This continues until a near-optimal solution is reached.

There are two important components that any metaheuristic algorithm must take

care of [48]:

» Exploration: it is called also diversification. It means to search for different
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solutions in the search space at a global scale.

o Exploitation: it is called also intensification. It means that a good solution
is found in the current local region, so the search should be focused in this

region.

A good metaheuristic algorithm tries to balance between exploration and exploita-
tion so that it converges fast to the optimal solution. That is why most metaheuristic
algorithms are stochastic in nature, which means they use some randomness to make
a trade-off between global optima and local optima [49].

Metaheuristic algorithms can be categorized into: single-based metaheuristic and
population-based metaheuristic [42]. In the following subsections, we briefly discuss
these categories, and we present some of the common metaheuristic algorithms used

in feature selection.

2.1.2.1 Single-based Metaheuristic Algorithms

These algorithms are also called trajectory algorithms. The reason behind this
is that they create an initial solution, and then they follow a specific path in the
search process to investigate neighboring regions [42]. The aim of these algorithms
is to reach a local optima. Simulated Annealing (SA) [50] and Tabu Search (TS) [51]

are two common examples of this algorithm.

2.1.2.2 Population-based Metaheuristic Algorithms

Compared to single-based algorithms, these algorithms initialize a set of solutions
(population), and then they search for better population. This continues until a
search criteria is reached [42]. Most of the algorithms in this category fall into either
Evolutionary Computation (EC) algorithms or Swarm Intelligence (SI) algorithms.

Evolutionary Computation (EC) is a form of Computation Intelligence (CI) that
is inspired by biological evolution and natural selection techniques [52]. These algo-
rithms start by a randomly generated population. Then, evolution operations such
as mutation are used to evolve the population. Genetic Algorithm (GA) [22] and
Differential Evolution (DE) [53] are two common evolutionary algorithms.

Swarm Intelligence (SI) is also a form of CI which simulates and imitates the nat-

ural swarms or communities, such as bird swarms and fish schools. These algorithms
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focus on finding mathematical formulas to model the behavior of swarm’s mem-
bers and their interactions to find food sources [3]. There are many SI algorithms,
such as: Particle Swarm Optimization (PSO) [24], Firefly Algorithm (FA) [26], Ant
Colony Optimization (ACO) [25], Artificial Bee Colony (ABC) [54], and Grey Wolf
Optimizer (GWO) [27].

In this study, we are mainly adopting Grey Wolf Optimizer (GWO) algorithm
which will serve as the search strategy of the hybrid approach proposed in Chapter 3.
GWO is a swarm intelligence algorithm developed by Mirjalili et al. [27]. It mimics
the hunting process of a pack of grey wolves in nature. A binary version of GWO
was developed by Emary et al. [23] to find optimal regions of complex search spaces
which makes it useful for feature selection. The binary version of GWO showed
faster convergence speed and higher classification accuracy than other population-
based algorithms, such as GA and PSO. Furthermore, GWO achieves a good balance

between exploration and exploitation as will be shown mathematically in Section 3.6.

2.2 Related Work

Many network attacks and abnormal behaviors have been introduced in recent
years. As a result, traditional ways for intrusion detection were not able to cope with
the speed of network advancements. For example, deep packet inspection (DPT) is
considered a traditional way that uses a rule-based technique for intrusion detection.
A DPI solution usually captures and decapsulates all packets passing through the
network. Then, it applies certain rules stored in the database to the packet in
order to identify anomalies. Applying such rules fails to understand several attack
behaviors in modern network environments [4].

As a consequence, researchers in the last two decades considered intrusion de-
tection as a classification problem [3]. Since then, there have been an ongoing effort
to create datasets simulated from real network traffic to capture the evolving at-
tacks. Table 2.1 lists most common IDS datasets [1]. In the scope of this study, we
consider only NSL-KDD dataset (analyzed in Section 3.2), and in the future we will
be considering more recent and more realistic datasets such as CIC-IDS-2017 and

CSE-CIC-IDS-2018.
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Table 2.1: IDS Datasets created from real network traffic

Number of

Dataset Name Created by Year

Features
DARPA [55] MIT Lincoln Laboratory 1998 | 41
KDDCUP’99 [56] University of California 1999 | 41
NSL-KDD [10] University of California 2009 | 41
Kyoto [57] Kyoto University 2011 | 24
ISCX-IDS-2012 [11] University of New Brunswick | 2012 | IP flows

Canadian Institute

CIC-IDS-2017 [12] 2017 | 80
of Cyber Security

Canadian Institute
CSE-CIC-IDS-2018 [12] 2018 | 80

of Cyber Security

Alongside this advancement in IDS datasets, there have been many studies ap-
plying different machine learning approaches to IDS problems. Figure 2.3 presents
most of these approaches according to latest surveys [58] [59] [60] [42].

The main motivation to use machine learning and data mining techniques is
that they detect known and unknown attacks in the network. Omne way to de-
tect unknown attacks is throw unsupervised and semi-supervised learning algo-
rithms [7] [61] [62] [63]. Nonetheless, supervised learning algorithms are still more
dominant in the field of intrusion detection. This is mainly because they are easier

to compare and to build on top of them.

ANN and SVM are the most used supervised learning algorithms for intrusion
detection [37] [59]. Saied et al. [64] used ANN to detect unknown distributed denial-
of-service (DDoS) attack, and they were able to detect 100% of the known attacks
and 95% of the unknown attacks. Yin et al. [65] used also recurrent neural networks
(RNN) to detect attacks. They achieved about 99% detection rate for known attacks
and more than 68% for the unknown attacks using NSL-KDD dataset. Another
study [66] proposed a hybrid of multilayer perceptron (MLP) neural network and
radial basis function (RBF) neural network to improve prediction accuracy in IDS.
Even though these classifiers perform well, they still suffer computationally from high

dimensional data. Therefore, Yi et al. [67] suggested a new kernel function U-RBF to
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SVM to reduce its computation complexity while achieving similar performance on
KDDCUP’99 dataset. Koc et al. [68] proposed another idea which is to use Bayesian
network classifiers as they are known to be simpler and faster. They showed that

Hidden Naive Bayes (HNB) performed better than SVM in detecting DoS attacks.

Nevertheless, many researchers pointed out that dimensionality reduction is vital
to achieve good performance in terms of high accuracy, low false positive rate and
efficient computation. For example, Vasan and Surendiran [8] did experiments on
KDDCUP’99 and UNB ISCX datasets using Principal Component Analysis (PCA),
and obtained 10 principal components to achieve similar accuracy to 41 features
used by C4.5 classifier.

Among dimensionality reduction techniques, feature selection is the most popular
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technique. A recent systematic review [60] showed that feature selection has been
broadly adopted in the last decade. Moreover, wrapper-based methods and hybrid
methods are being used more than filter-based methods. This is because wrapper-
based methods and hybrid methods search for the optimal or near-optimal subset
of features. Since we are looking for optimal solutions, most wrapper-methods use

metaheurisitc algorithms as a search strategy technique.

Metaheuristic algorithms aim to find the optimal or near-optimal solution to a
problem. As explained in Section 2.1, these algorithms are divided into: single-based
and population-based. In literature [42], population-based metaheuristic algorithms
are more commonly used for intrusion detection compared to single-based meta-
heuristic algorithms. Among population-based methods, Evolutionary Computation

(EC) and Swarm Intelligence are the most common methods.

As an example on single-based metaheuristic, Li et al. [18] proposed a modified
version of random mutation hill climbing (RMHL) as a search strategy and Linear
SVM for evaluation to find the optimal feature subset per each attack category of
KDDCUP’99 dataset. The modified version of RMHL speeds up its convergence
and its dimensionality reduction ability. They performed the experiments on five
samples each representing an attack category of KDDCUP’99.

To assist on the effectiveness of feature selection, the authors chose to compare
building and testing time, and ROC score of selected features against all features.
The results showed that the selected features improves the speed of the algorithm

while achieving higher ROC score.

When working with population-based metaheuristic algorithms, the researchers
focus on effectively reducing the search space of such algorithms. This is usually
achieved by applying a filter-based method in prior of wrapper-based methods. For
example, Mohammadi et al. [69] focused on the importance of feature selection to
reduce false positive rate and to reduce the search space for large datasets such
as KDDCUP’99. First, they applied a filter-based method called feature grouping
based on linear correlation coefficient (FGLCC) to select the best features that
have maximum correlation with the class and minimum relation with other selected
features. Then, they applied a wrapper-based method that uses cuttlefish algorithm

(CFA) as a search strategy and decision tree classifier for the fitness function.
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The proposed approach only considered binary classification, and its performance
was evaluated on 10% of KDDCUP’99 dataset. The results showed good accuracy

and low false positive rate.

Similarly, Selvakumar and Muneeswaran [5] used filter and wrapper methods
to reduce the dimensionality of KDDCUP’99 dataset. First, they used the mutual
information as a filter method to select the first subset of features. Then, they used
a metaheuristic technique called Mutual Information Firefly Algorithm (MIFA) to
select two subsets of features, the first subset is selected using C4.5 classifier, and
the second subset is selected using Baysian network. The final subset of features is
constructed using a voting technique, where each feature is selected if and only if it
exists at minimum in two subsets. Finally, C4.5 and Baysian network are used for
classification after feature selection.

They [5] ran the experiments using 10 fireflies and a maximum of 100 iteration.
They were able to prove that 10 features (out of 41) are sufficient to improve the

training and testing time, the detection rate and the false positive rate.

Regular metaheuristic algorithms suffer from the computation time needed to
choose optimal subset and from local optima problem. This is where Evolutionary
Computation (EC) and Swarm Intelligence (SI) algorithms come into play. EC and
SI algorithms offer similar benefits except that SI algorithms are nature-inspired
and tend to converge faster. Now, we will go through some of the recent studies

applying EC or SI algorithms in IDS.

Hajimirzaei and Navimipour [70] classified IDS in cloud computing as an NP-
Hard problem. Therefore, they suggested to use metaheuristic algorithms and evo-
lutionary methods to solve it. They first used Fuzzy C-Means clustering (FCM) to
improve the training speed. Then, they used a multilayer ANN with back propa-
gation for the classification. Moreover, they applied ABC to optimize the linkage
weights and biases of the nodes in the training stage.

The experiments were performed on NSL-KDD dataset. The proposed method out-
performed similar state-of-the-art methods by achieving lower mean absolute error

(MAE) and root mean square error (RMSE) values.

On the other hand, Aburomman and Reaz [71] achieved an accuracy of 92% on

KDDCUP’99 dataset by applying particle swarm optimizer (PSO) to the output of
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an ensemble of classifiers.

Moreover, Bamakan et al. [3] adopted an enhanced version of PSO called time-
varying chaos PSO (TVCPSO) to select the most important features, and to fine
tune the parameters SVM and Multiple Criteria Linear Programming (MCLP) clas-
sifiers. The authors emphasized that three main factors impact the efficiency of
any intrusion detection system: feature selection, high detection rate, and low false
alarm rate. Therefore, they proposed a weighted objective function that takes these
three factors into consideration.

NSL-KDD dataset was considered in the experiments. They ran the experiments for
10 iterations, in each iteration 10-fold cross-validation was used, and then the aver-
age measures were taken. They proved that feature selection increases the detection
rate of their proposed methods. Moreover, they achieved comparable accuracy and

false alarm rate to similar methodologies.

More recently, Hajisalem and Babaie [6] used Swarm Intelligence techniques to

improve the classification accuracy on NSL-KDD and UNSW-NB15 datasets. To
decrease complexity and increase efficiency, they first used Fuzzy C-Means cluster-
ing (FCM) to divide the training data into smaller subsets. Then, they applied
Correlation-based Feature Selection (CFS) on each subset, which resulted in se-
lecting six features from NSL-KDD and six features in UNSW-NB15. Then, they
used Classification and Regression Tree (CART) to generate effective rules set. For
example, the authors found that when logged_in feature has the value ’0’, this
demonstrates a normal behavior. During this step, the authors used also the idea
of dividing normal behaviors into K ranges which was already proposed in [72] to
reduce processing time. Finally, they applied a hybrid classifier based on Artificial
Bee Colony (ABC) and Artificial Fish Swarm (AFS).
The experiments were performed on random samples from NSL-KDD and UNSW-
NB15 datasets. The authors [6] were able to achieve an accuracy ranging from 96.7%
to 99% and FPR ranging from 0.82% to 0.01% in NSL-KDD, and an accuracy rang-
ing from 95% to 98.9% and FPR ranging from 2.1% to 0.13% in UNSW-NBI15.

Even though GWO is still a new SI algorithm, it is taking more attention in
IDS recent studies. For example, Seth and Chandra [29] used GWO to reduce the

number of attributes in NSL-KDD. They started by applying a probability density

28



Intrusion Detection System using Feature Ranking and GWO

function on nominal attributes to transform them into numerical attributes. Then,
they applied a binary version of GWO [23] with a population size of 12 to reduce
the NSL-KDD attributes. They were able to select 24 attributes out of 41. Finally,
they used neural network as a classifier.

The experiments were performed with different number of neurons, and a size of 70%,
15%, and 15% for the training, testing and validation respectively. Throughout 300

iterations, a maximum accuracy of 99.5% was achieved.

Going further, Devi and Suganthe [30] applied a multi-objective GWO technique
for attribute reduction. This technique runs in two stages to combine the efficiency of
filter-based methods and the effectiveness of wrapper-based methods. The first stage
searches for the attribute combination that maximizes the mutual information. The
solution resulted from the first stage is used as an initial population to the second
stage. In the second stage, the feature set that maximizes the correct classification
ratio (CCR) is selected. A combination of SVM and Naive Bayes classifiers is used
to improve the accuracy. Moreover, the factor that controls the exploitation and
exploration of GWO is kept in this stage between 0 and 1 to fine tune the solutions
around the initial population.

The proposed technique was experimented on NSL-KDD dataset, where it reduced
the features from 41 to 18, and achieved good accuracy and false positive rates in a

reasonable execution time.

2.3 Summary

In this chapter, we first presented a theoretical background on machine learning,
feature selection, and metaheuristic algorithms. We also talked briefly about five
common classifiers: SVM, KNN, ANN, Decision Tree, and Naive Bayes.

Regarding feature selection, there are four known approaches: filter approaches,
wrapper approaches, embedded approaches, and hybrid approaches. Filter ap-
proaches are known for their fast computation, while wrapper approaches are known
for their optimization capabilities. Embedded approaches are similar to wrapper ap-
proaches except that they try to employ feature selection in the learning process,

and thus, they are faster. On the other hand, hybrid approaches are two-stage fea-
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ture selection approaches, in which the first stage uses a filter method to reduce the
data, and the second stage uses a wrapper method that takes the reduced data as
input.

Metaheuristic algorithms are optimization algorithms that can be used to search
for the optimal or near-optimal subset of features. There are two main cate-
gories of metaheursitic algorithms: single-based or trajectory-based algorithms, and
population-based algorithms. The main differences between single-based algorithms

and population-based algorithms are:

1. Single-based algorithms use one solution while population-based algorithms

use a set of solutions.

2. Single-based algorithms look for the local optima, while population-based al-

gorithms make a trade-off between local optima and global optima.

There are two major categories of population-based algorithms: Evolutionary Com-
putation (EC) algorithms and Swarm Intelligence algorithms (SI).

After this theoretical foundation, we reviewed different machine learning algo-
rithms used in IDS. It is noticed that in the last decade, there is an increase in the
research studies that consider SI algorithms in their intrusion detection systems.

GWO is among these SI algorithms.
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Chapter 3

Hybrid Feature Selection using
Feature Ranking and GWO

As stated in Section 2.1.1, high dimensionality is a challenge that any IDS must
overcome to achieve real-time prediction. Therefore, many researchers emphasized
the importance and effectiveness of using a dimensionality reduction technique in
IDSs [3] [73] [74].

Consequently, we decided to use one of the most efficient dimensionality reduction
techniques, which is feature selection. Feature selection is performed in the pre-
processing step. Its main objective is to select the features set that will not only
decrease classifier training time and prediction time, but will also achieve similar or
even better prediction.

In this chapter, we present a hybrid feature selection approach applied on NSL-KDD
dataset. The fist stage of the feature selection is filter-based using Analysis of Vari-
ance (ANOVA) F-value for feature ranking, and the second stage is wrapper-based
using Binary Grey Wolf Optimizer (BGWO) as a search strategy and Random For-
est for fitness function.

We first present an overview of the approach. Then, we present an overview on

NSL-KDD dataset. Then, the next sections go through each step of the approach.

3.1 Overview

As shown in Figure 3.1, there are three main steps:
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1. Splitting dataset into training and testing sets: a random seed is used to
shuffle the data and split it into 70% training and 30% testing sets. Stratified
sampling is use in this step, such that the distribution of each class in the

complete dataset is preserved in the training and testing sets.

[ Split dataset into ‘

training-testing datasets

Training Data Testing Data
Preprocessing
__________________________________________ -
h 4 ¥
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values map (zero for new values)
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Figure 3.1: Proposed approach flowchart
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2. Preprocessing: this is the main step in the proposed approach. Feature ranking
(a filter-based method) is used to reduce the dataset by selecting a percentage
of the top ranked features. Then, a wrapper-based method with BGWO as a
search strategy is applied on the reduced dataset to select the optimal features

subset.

3. Classification: different classifiers are applied on the reduced dataset. And

both multi-class classification and binary classification are evaluated.

3.2 NSL-KDD

3.2.1 Overview

NSL-KDD dataset [10] is one of the most effective datasets in the domain of
intrusion detection. It is a modified version of KDDCUP’99 dataset [56], which was
created in 1999. KDDCUP’99 is constructed from simulated TCP connections in
a military network environment [3]. KDDCUP’99 had been the most widely used
dataset to evaluate IDSs until recent years [60]. However, researchers found some

deficiencies that make it less reliable [10]:

1. Redundant records: this mainly affects the performance of any classifier such

that it is biased towards more frequent records.

2. Low difficulty level: applying simple machine learning methods will give at
least 86% accuracy, which makes it difficult to compare the different models

as they will fall in the range of 86% to 100%.

To deal with these deficiencies, the following improvements were applied to NSL-
KDD [10]:
1. Removing all redundant records from train and test sets so that there will be

no biasing.

2. Better sampling and distribution for the records which will increase the clas-

sification challenge.

3. Reasonable number of records in train and test sets. This makes it affordable

to run experiments on the whole dataset without any need for sampling.

33



Intrusion Detection System using Feature Ranking and GWO

NSL-KDD still does

not perfectly represent real networks. Nonetheless, it is still a

reliable benchmark dataset to compare intrusion detection methods.

3.2.2 Description

NSL-KDD records are labelled as normal or attack. There are 39 different attacks

distributed (with some overlap) as 22 attacks in the training set and 37 attacks in

the testing set. These attacks fall into four basic categories detailed as follows:

Denial of Service Attack (DoS): involves attacks which try to keep the ma-
chine’s memory or computing resources too busy such that the machine cannot

serve its legitimate users.

User to Root Attack (U2R): involves attacks in which the attacker first gains
access to a normal user account, and then tries to exploit some vulnerability

to gain root access to the system.

Remote to Local Attack (R2L): involves attacks in which attacker keeps send-
ing packets to a machine over some network. The main purpose in these

attacks is to try to find a system vulnerability to gain access as a normal user.

Probing Attack: these attacks scan the computer networks to find some vul-

nerability in its security controls.

Table 3.1 shows the detailed distribution of the different attacks.

Table 3.1: NSL-KDD Attack Distribution

Attack Category

Attacks Included

DoS

neptune, back, land, pod, smurf, teardrop, mailbomb,

apache2, processtable, udpstorm, worm

Probing ipsweep, nmap, portsweep, satan, mscan, saint

R2L ftp_ write, guess_ passwd, imap, multihop, phf, spy, warez-
client, warezmaster, sendmail, named, snmpgetattack, sn-
mpguess, xlock, xsnoop, httptunnel

U2R buffer overflow, loadmodule, perl, rootkit, ps, sqlattack,

xterm
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Moreover, NSL-KDD is constructed from 41 attributes or features. These fea-

tures fall into three main categories as shown in Table 3.2:
1. Basic features: these attributes are extracted from a TCP/IP connection.

2. Content features: these attributes are extracted from the data portion of the
packet. They are very important to detect R2L. and U2R attacks. This is

because these attacks usually involve a single connection.
3. Traffic features:

(a) Time-based traffic features: these attributes are extracted from connec-
tions in the past two seconds that have the same destination or same

service as current connection.

(b) Connection-based traffic features: these attributes are extracted from last
100 connections that has the same destination or same service as current
connection. Extracting such attributes contributes more in detecting

probing attacks.
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Table 3.2: NSL-KDD Features

Type Features Range/Values
duration 0- 57715
protocol type tep, udp, icmp
service http, private, domain u, smtp,
ftp data, other, eco i, telnet,
Basic
ecr i, ftp, finger, pop_ 3, auth,
features
imap4, 739 50, uucp, courier,
bgp, iso_ tsap, uucp_ path, whois,
time, nnsp, vmnet, urp_ i, do-
main, ctf, csnet_ns, supdup,
http_ 443, discard, gopher, day-
time, sunrpc, efs, link, sy-
stat, exec, name, hostnames,
mtp, echo, login, klogin, net-
bios dgm, Ildap, netstat, net-
bios_ns, netbios ssn, ssh, kshell,
nntp, sql_net, IRC, ntp_u, rje,
remote_job, pop_ 2, X11, shell,
printer, pm_ dump, tim_ i, urh i,
red i, tftp _u, http_ 8001, aol,
harvest, http 2784
flag SF, S0, REJ, RSTR, RSTO, S1,
SH, S3, 52, RSTOS0, OTH
src__bytes 0 - 1379963888
dst_ bytes 0 - 1309937401
land 0,1
wrong fragment 0-3
urgent 0-3
Content ot v- 10
num__failed_ logins 0-5
features
logged in 0,1
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Continuation of Table 3.2

Type Features Range/Values
num_ compromised 0- 7479
root_ shell 0-1
su_ attempted 0-2
num_ root 0- 7468
num_file creations 0-100
num_ shells 0-5
num_access_files 0-9
num_outbound cmds 0
is_ host__login 0,1
is_ guest_ login 0,1
count 0-511
srv__count 0-511
serror_rate 0-1
srv_serror rate 0-1

Time-based

rerror_rate 0-1

traffic features
srv_rerror rate 0-1
same Srv_rate 0-1
diff srv rate 0-1
srv_diff host rate 0-1
dst host count 0- 255
dst__host srv_count 0- 255
dst _host same srv_rate 0-1
dst__host diff srv rate 0-1

Connection-based| dst_host same src port rate 0-1

traffic features | dst host srv diff host rate 0-1

dst host serror rate 0-1
dst host srv serror rate 0-1
dst__host rerror rate 0-1
dst host srv rerror rate 0-1

37




Intrusion Detection System using Feature Ranking and GWO

3.3 Nominal Features Transformation using

Probability Density Function (PDF)

Feature ranking and many classification algorithms are mathematical-based.
Therefore, it is important to transform the nominal features of a dataset into their
numerical representation. NSL-KDD dataset has three nominal features (as stated
in Table 3.2): protocol _type, service, and flag.

To avoid biasing the data, we did not encode the data with a static value map
(e.g. http takes 1, smtp takes 2, and so on). Rather, we applied probability density
function as in Eq. (3.1) [29] such that the most frequent nominal value in a column
takes the highest numerical value while still being bounded between 0 and 1. This
range goes along with the numerical features normalization (as explained in the next

section). .
occur(x

PDF(z) = 240 (3.1)

n

where occur(z) is the number of occurrences of value x within a column, and n is

the total number of records.

3.4 Numerical Features Normalization
using Min-Max

Another important step before working with feature ranking and classification
algorithms is to normalize numeric features. Normalizing a feature means to scale
its values to fall into a smaller range [36].

For example, there are features in NSL-KDD dataset that have wide range of values,
such as: duration, src__bytes and num,__root. While there are other features that have
smaller range of values, such as: num__failed_logins, is _host_login, and srv_count.
Keeping the features without normalization may cause biasing towards selecting
wide range features which may also affect classification performance.

To prevent this dominance, we chose to scale all the numeric features to fall in the
range of [0, 1] using min-max normalization. Min-max scaling is shown in Eq. (3.2),
where z is the value to be scaled in feature X, MinMax(zx) is the scaled value of

x, Min(X) and Maz(X) are the minimum and maximum values respectively in
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feature X, min and max are the boundaries of the new range.

x — Min(X)
Max(X) — Mm(X)) (32)

MinMazx(xz) = min + (max — min)(

3.5 Feature Ranking using ANOVA F-value

Feature ranking is a filter-based method that measures how significant a feature
impacts the target class [75]. As indicated in Section 2.1, filter-based methods are
usually statistical-based offering fast computation. However, they do not offer the
ability to select the optimal subset of features. Therefore, we will use feature ranking
to select a percentage! of the top ranked features to reduce the data dimension before
passing it to a wrapper-based method that uses GWO as a search strategy. On the
one hand, wrapper-based methods search for the optimal subset of features. On the
other hand, they suffer from large search spaces which might take long time without
giving the optimal subset. Therefore, this hybrid approach combines the best of
both filter-based and wrapper-based methods.

One of the common statistical tests for feature ranking is Analysis of Variance

(ANOVA). ANOVA uses F-value (or F-ratio) to measure whether the means of
three or more groups are equal or not [76]. This is represented by its null hypoth-
esis: HO : py = puo = pg and its alternative hypothesis: H1 : puy # po # ps. If the
null hypothesis is true, F-value is expected to be close to 1.
When applying ANOVA in univariate feature ranking, a method called one-way
ANOVA is used. In this method, the F-value of each feature is independently com-
puted, and the feature with the highest F-value is the top ranked feature. In other
words, the top ranked feature has the most impact on the target class (i.e. groups).
To better understand the F-value calculation, we will go through an example on
NSL-KDD dataset.

In NSL-KDD dataset, each record is classified to one of five groups: Normal (no
attack), DoS attack, Probing attack, R2L attack, and U2R attack. Assuming we are
calculating the F-value of service and flag, and we have 31 records as in Table 3.3.

Then, we have the following variables:

e k = number of groups which is 5

ldiscussed alongside in section 5.2
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e N = number of records which is 31

e Nuormats Naos, Nprovings Nrat, Nuzr = the number of records in each group which

is: 9,7, 6, 6 and 3 respectively.

Table 3.3: NSL-KDD ANOVA Example

Service Flag Category
21 2 Normal
32 10 Normal
39 60 Normal
45 60 Normal
57 60 Normal
52 60 Normal
48 60 Normal
33 60 Normal
32 60 Normal
11 25 DoS

14 60 DoS

13 10 DoS

19 10 DoS

22 25 DoS

25 10 DoS

30 25 DoS

3 60 Probing
7 60 Probing
4 60 Probing
9 10 Probing
) 2 Probing
6 10 Probing
5 60 R2L

3 2 R2L

2 60 R2L

3 60 R2L

W
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Continuation of Table 3.3

Service Flag Category
4 10 R2L
8 60 R2L
3 2 U2R
3 60 U2R
2 60 U2R

The F-value of a variable X is the ratio of the variance between groups to the
variance within groups [77]. This is represented in Eq. (3.3) where MS,, is the

mean squares between groups, and MS,,, is the mean squares within groups.

_ MSy,
- MS,,

F (3.3)

A mean squares is the weighted sum of square deviates divided to a degree of free-
dom. The degree of freedom is decided based on the context of the calculation. So,
the degree of freedom of M S, (annotated dfy,) is k — 1, and the degree of freedom
of MS,, (annotated df,,) is N — k as explained in Eq. (3.4). dfy, is called nu-
merator degree of freedom, and df,, is called denominator degree of freedom, and
they are both used to draw the F-distribution F'(df1,df2). Figure 3.2 shows the
F-distribution for df1 of 4 and df2 of 26 as in our example.

Afwg = Afnormat + dfdos + df probing + dfrar + dfuor
= (Nnormat = 1) + (Naos = 1) + (Nprobing — 1) + (Nyor = 1) + (Nygr — 1) (3:4)
=N-—k
The weighted sum of square deviates between groups 595, and within groups S,

are given by Eq. (3.5) and Eq. (3.6):

k
SShy =Y _ni(X; — X)? (3.5)
Jj=1

k
SSug = Y (X = X;)° (3.6)
j=1
where:

« n; = number of records in j™ group
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F-Distribution dfl: 4, df2: 26

0.7

0.6 A

0.5 A

0.4 1

0.3 A

0.2 A

0.1~

0.0 ~

X ~ F(4, 26)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3.2: F-Distribution F(4, 26)

« X, = sample mean of j® group

« X = overall sample mean

4.0

Based on the above equations, we will use the following table to calculate F-value:

Table 3.4: F-value calculation template

Source of | Sums of | Degrees of | Mean F
Variation Squares Freedom Squares

(SS) (df) (MS)
Between S'Shg k—1 M Sy, F= AAjTSZgg
Groups
Within SSug N —k M S,
Groups

Correspondingly, Tables 3.5 and 3.6 show the F-value for service and flag fea-

tures, respectively. Obviously, the F-value of service is much higher than the F-value
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of flag in this example. This means that service has more impact than flag on the

target class.

Table 3.5: F-value calculation for service feature

Source of | Sums of | Degrees of | Mean F
Variation Squares Freedom Squares

(SS) (df) (MS)
Between S'Shg =|k—-1=4 M Sy, =| F =329
Groups 7087.2916 1771.8229
Within S'Suwg = | N—k=26 | MSy, =
Groups 1398.5794 53.7915

Table 3.6: F-value calculation for flag feature

Source of | Sums of | Degrees of | Mean F
Variation Squares Freedom Squares

(SS) (df) (MS)
Between S'Shg =|k—1=4 M Sy =|F=1
Groups 2586.4793 646.6198
Within S'Suwg =|N—-k=26 | MSy, =
Groups 16819.7143 646.9121

3.6 Feature Selection using BGWO

After applying feature ranking and selecting a percentage of the top ranked
features, we will search for the optimal subset of features using a wrapper-based
method that uses Grey Wolf Optimizer (GWO) [27] as a search strategy and Random
Forest classifier? for the fitness function.

GWO is inspired from the social intelligence of grey wolf packs in leadership and
hunting [28]. Grey wolves prefer to live in a pack with an average size between 5
and 12. Within a grey wolf pack, there is a social dominant hierarchy that consists

of the following wolves [28] [23]:

2KNN classifier is proposed in the original algorithm, but we found that Random Forest is much

faster and more accurate
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1. Alpha wolves: these wolves are leading the pack in hunting, migration, feeding

and decision making. Their decisions are dictated to the pack.

2. Beta wolves: these wolves are subordinate wolves that help the alpha in deci-

sion making or other activities.
3. Delta wolves: these wolves submit to alphas and betas.

4. Omega wolves: these wolves play the role of scape goat. They are the last

wolves that are allowed to eat.

Mathematically, GWO tries to model the steps followed by the grey wolf pack in
hunting a prey. These steps are [28]: chasing, encircling, harassing and attacking.
Therefore, the fittest solution is called alpha «, the second solution is beta 5 and
the third solution is delta §. Other solutions are assumed to be omega w.

Encircling behavior is modeled by Eq. (3.7):

X(t+1)=X(t)—AD (3.7)

—

where X (¢t + 1) is the next positions of a wolf, X(t) is current position, A is a
coefficient matrix and D is a vector that depends on the location of the prey X,(t)

as shown in this equation:

D =|C.X,(t)— X(t)] (3.8)
where C' = 2.7 and 7 is a random vector in the range [0,1].
Eq. (3.7) can be simplified by making assumptions on the hunting behavior. The
hunt is usually guided by alpha wolves. Beta and delta wolves have lower partic-
ipation. These wolves are assumed to have better knowledge about the potential
location of the prey. Therefore, their positions are considered the best three search
agents, and other search agents (representing other wolves’ positions) are obliged to
update their positions based on these three best agents [23]. This can be simulated
as in Eq. (3.9). S
— X+ X+ X5

X(t+1) = 3 (3.9)

where X, X,, X are defined as in Egs. (3.10) - (3.12), respectively.

— — —

X, = |X, — A4,.D,)] (3.10)
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X, = | X5 — Ay.Dy| (3.11)
X3 = |X; — A3.D; (3.12)

where X;, X, 3, )i; are the positions of «, 3, 0 at a given iteration ¢ respectively.
ffl, ffg, ffg are defined as in Eq. (3.13), and D;, ﬁﬁ, 55 are vectors that depend on

current positions and X, X 3 X and a random vector 5 in the range 0, 1].
A =237 — a[28] (3.13)

In Eq. (3.13), 7 is a random vector in the range [0,1], and vector @ is linearly

decreased from 2 to 0 over the course of iterations as shown in Eq. (3.14):

2
=2 —t— 3.14
“ MaxIter ( )

where ¢ is the iteration number and Maxlter is the total number of iterations
allowed for the optimization.

From the mathematical model of GWOQO, it can be seen that GWO tries to make a
balance between exploration and exploitation, which are two conflicting metrics [28].
Exploration is mainly controlled using C vector, which is always in the range of
[0, 2]. Since this vector is independent from the iteration number, it emphasizes
exploration when there is a local optima. In addition to 5, A is also affecting the
exploration. However, A is affecting exploitation as well. This is mainly explained
by the dependence of A on the linearly decreasing vector d. Since @ decreases from 2
to 0 based on the iteration, A falls in the range of [-2,2], and when it is larger than 1
or smaller than -1, exploration is emphasized, otherwise, exploitation is emphasized.
The mathematical model of GWO also means that wolves are continuously changing
their positions to whatever point in the space. This is not suitable for feature
selection problems, where solutions should be in the binary form. Based on this
need, Emary et al. [23] developed a binary version of GWO (BGWO).

In BGWO, all solutions are in binary form at any given time. This is achieved by
applying a sigmoidal function on the product of A and D vectors in Egs. (3.10)-
(3.12). The sigmoidal function is applied as in Eq. (3.15) for v solution and similarly

for B and ¢ solutions using /fgﬁ/g and A3 Dy respectively.

1
1+ e—10(A1Dq—0.5)

cstepy = (3.15)
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After applying the sigmoidal function, a random threshold is applied as in Eq. (3.16).

o 1 if cst_épa > rand
bstep, = (3.16)
0 otherwise.
where rand is a random number drawn from uniform distribution of € [0, 1]. The
random threshold is applied similarly to 8 and § sigmoidal functions.
Then, X, X,, X3 are computed as in Egs. (3.17) - (3.19).

. 1 if (X, + bstep,) > 1
X, = ( Pa) (3.17)

0 otherwise.

. 1 if (X5 + bsteps) > 1
<, - (Xs ps) > (3.18)

0 otherwise.

. 1 if (X5 4+ bsteps) > 1
X, = (Xs Ps) (3.19)

0 otherwise.
Finally, the updated position of all wolves X (t + 1) is computed using a suitable
crossover between )51, )?2 and )53 as show in Eq. (3.20).
X 1 if rand < %
Xt+1)={ X, 3 <rand < 3 (3.20)

X3 otherwise

where rand is a random number drawn from uniform distribution in the range [0,
1].

In BGWO, the best feature combination is the one with maximum classification
performance (or minimum error rate) and minimum number of selected features.

Therefore, the fitness function used in BGWO is shown in (3.21).

Fitness = aEgr(D) + ﬁ:—?: (3.21)

where Er(D) is the error rate for the classifier of condition attribute set, R is the
length of selected feature subset, and C' is the total number of features, o and [ are
two parameters corresponding to the importance of classification quality and subset

length, a € [0,1] and f =1 — «; f = 0.01 by author [27] experiments.
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3.7 Multi-class Classification using
One-vs-rest Strategy

Intrusion detection is a multi-class classification problem [3]. There are two
common strategies for such problems: one-vs-one and one-vs-rest (OvR). In one-
vs-one, a binary classifier is trained for each pair of classes, resulting in a total
of w binary classifiers where N is the number of classes. The class of a new
test instance is determined based on a majority vote. While this strategy involves
smaller subsets passed to each classifier, it is still considered computationally slower
than one-vs-rest strategy. Hence, we adopted one-vs-rest strategy.

In one-vs-rest, the training dataset is passed to N binary classifiers each rep-
resenting a class. As shown in Figure 3.3, each classifier takes the data with two
labels: positive label (usually 1) representing the assigned class, and negative (or
zero) label representing any other class.

When it comes to prediction, each classifier estimates a probability of classifying the

new test instance to its assigned class. The highest probability determines the class

of the test instance. This is illustrated in Figure 3.4 [78].
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Figure 3.3: One-vs-rest (OvR) Dataset Separation
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Figure 3.4: One-vs-rest (OvR) Approach
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3.8 Summary

In this chapter, we first presented an overview of the proposed approach. There

are three main stages:

1. Splitting the dataset in a stratified fashion into 70% training dataset and 30%

testing dataset.

2. Preprocessing: starts by transforming the nominal features to numerical fea-
tures using probability density function (PDF), and then numerical features
are normalized using min-max, and at the last stage feature selection using

the proposed approach is applied.
3. Classification

After that, we analyzed NSL-KDD dataset to understand the motivation behind
it, the main attacks it contains, and its features with their respective values/range.
Then, we briefly explained nominal features transformation and numerical features
normalization.

After that, we explained thoroughly ANOVA F-value with an example. Simply
saying, ANOVA F-value is a well-known statistical test that tests whether the means
of three or more groups are equal or not. If F-value is around 1, then the means are
almost equal. If F-value is very large, then the means are different. When applying
ANOVA F-value to feature selection, we are aiming to select the features that have
the highest F-value. Because this means that these features can be used to predict
the class label.

After that, we explained thoroughly the mathematical model behind GWO and
BGWO. We also emphasized how mathematically GWO tries to balance between
exploration and exploitation. GWO, as a result, can efficiently manage the trade-
off between local optima and global optima. This is a main characteristic in any
efficient metaheuristic algorithm.

Finally, we presented a strategy for multi-class classification called one-vs-rest
(OvR). In this strategy, there will be a binary classifier for each label. In each
classifier, the positive label is for the assigned label, and the negative label is for

any other label. The training data will be passed to each of these classifiers. When
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we want to predict a testing record, each classifier gives a probability on classifying
that record into its positive label. The label of the classifier with highest probability

will be assigned to the testing record.

o1



Chapter 4

Experimental Setup and

Evaluation Metrics

4.1 Methodology

The proposed approach implements a hybrid feature selection algorithm that
uses ANOVA F-value to reduce the features dimension before applying a wrapper
method. The wrapper method uses GWO as a search strategy. The main goals of

the proposed approach are:

1. To reduce classification training and prediction time, while achieving similar

or better classification performance.

2. To reduce the search space and computation complexity of GWO such that

faster convergence is achieved and a smaller subset of features is selected.

Before verifying the efficiency of the proposed method, we need to tune the main

parameters affecting its performance. These parameters are:

1. ANOVA F-value Threshold: the threshold in this case is the percentage of

top-ranked features that we want to select.
2. GWO Population size: affects the convergence speed of GWO.

3. GWO Iterations: affects the execution time of GWO.

After that, the classification time and performance of the proposed approach

are compared to the classification time and performance with GWO only (without
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ANOVA F-value) and without feature selection. To evaluate the classification per-
formance, we chose five classification models that are commonly used in IDS [37] [79]:
SVM, KNN, Decision Tree, Naive Bayes, and ANN.

For the sake of this research, we ran the experiments on NSL-KDD dataset, but we
plan to continue experimentation on other recent datasets, such as CIC-IDS-2017
and CSE-CIC-IDS-2018. To make sure that we avoid any overfitting or biasing is-
sues, we ran 30 experiments for each of the three approaches. This applies also to
the parameters tuning experiments. In each experiment run, the data is randomly
shuffled and separated to 70% training set and 30% testing set. The separation is
performed in a stratified fashion, so it preserves the original data distribution. Af-
terwards, we consider the average of each evaluation metric to do the comparison.

The results and their analysis are reported in the next chapter.

4.2 Environment and Implementation Tools

We ran the experiments on a machine with the following specifications:

Table 4.1: Machine specs
(O Windows 10 Pro 64-bit
RAM | 16.0 GB
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

CPU

with 4 Cores and 8 Logical Processors

Furthermore, the algorithm was implemented in Python 3.7.5 where the following

tools and libraries were used:

o PyCharm Community Edition: a well-known IDE for Python applications.

o NumPy [80]: a numerical Python library that makes it easy to manipulate

arrays and matrices.

« pandas [81]: a Python library used for data manipulation and analysis. So it

makes it easy to read/write the data from/to CSV or Excel files.

« Matpolotlib [82]: a plotting Python library that works well with pandas and

numpy.
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« BGWO Matlab implementation [23]: the original implementation of the algo-

rithm from the authors. We did the same implementation in Python taking

advantage of EvoloPy [83], which is a repository that implements many SI

algorithms (including GWO) in Pyhton.

o scikit-learn [84]: a well-known machine-learning library. We used many out of

the box algorithms from this library including;:

4.3

The

f_classif to realize ANOVA F-value and SelectPercentile to apply a

threshold on top ranked features.

SVC which stands for Support Vector Classifier is an SVM based algo-
rithm that by default uses radial basis function (RBF) as a kernel.

KNeighborsClassifier with the default value of neighbors which is 5.

DecisionTreeClassifier with the default algorithm which is CART (Clas-

sification and Regression Tree).
GaussianNB stands for Gaussian Naive Bayes.

MLPClassifier stands for Multi-layer Perceptron classifier, which is an
ANN algorithm. It comes with a default value of 100 for the hidden

layers.

OneVsRestClassifier which is a realization for one-vs-rest multi-class clas-

sification strategy.

Evaluation Metrics

effectiveness of any IDS is mainly measured by [3] [58] [73]: overall ac-

curacy, detection rate, false alarm rate, training time, and prediction time. A

well-performing IDS would achieve a low false alarm rate, and high accuracy and

detection rate.

The common way to derive the definition of these metrics is through a confusion

matrix. Just for simplicity, we will assume an IDS that performs binary classifica-

tion. In this IDS, a record that is labeled as "attack” is a "Positive” record, and a

record that is labeled as "normal” is a "Negative” record. Confusion matrix is a two
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by two matrix that represents the four possible combinations of the actual records

and the predicted records.

Table 4.2: Confusion matrix

Predicted
Negative (normal) | Positive (attack)
Negative (normal) TN FP
Actual
Positive (attack) FN TP

Table 4.2 shows a confusion matrix where:

o True Negative (TN): represents the number of normal records correctly pre-

dicted as normal.

o False Positive (FP): represents the number of attack records wrongly predicted

as normal.

o False Negative (FN): represents the number of normal records wrongly pre-

dicted as attack.

 True Positive (TP): represents the number of attack records correctly predicted

as attack.
Based on the confusion matrix, we can define the metrics mentioned above as follows:

o Overall Accuracy: is the percent of correctly classified records. It is calculated

by:

TN+ TP
11 A = 4.1
Overall Accuracy TNTFPLFN TP (4.1)

o Detection Rate (DR): also called Recall or sensitivity or true positive rate
(TPR). It is the percent of correctly classified attacks to the total number of
actual attacks. When it is near 1, it means that the classifier performed well

in predicting almost all actual attacks. It is calculated by:

TP
Detection Rate (DR) = TP+ FN (4.2)

« False Alarm Rate (FAR): also called False Positive Rate (FPR). It is the

percentage of wrongly classified normal records. When it is near zero, it means
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that the classifier performed well in avoiding misprediction of almost all normal

records. It is calculated by:

PP
FAR = ——— 4.
R FP+TN (4:3)

Another two well-known metrics that can be calculated from confusion matrix

are Prediction and F1. They are calculated as in Eq. (4.4) and Eq. (4.5).

TP

Precision = 7—'P—|——F1P (44)
2T'P
F1= 4.
2'P+ FP+ FN (4.5)

In this study, we are considering intrusion detection as a multi-class problem. In
multi-class case, all metrics except overall accuracy need to be calculated per class.
Therefore, we have to treat each class as if it is the positive class that we want to
detect, and the other classes are negative. We demonstrate this treatment by having
an example of a 5x5 confusion matrix on NSL-KDD classes. This confusion matrix

is shown in Table 4.3.

Table 4.3: Multi-class confusion matrix
Predicted
Normal | DoS | Probe | R2L | U2R

Normal | 21761 286 677 | 287 | 106
DoS 1183 | 14535 | 209 74 15
Actual | Probe 510 72 3550 68 23
R2L 631 77 197 | 235 | 24
U2R 31 1 1 2 1

We will break this confusion matrix into 5 smaller matrices each of size 2x2. Fig-
ure 4.1 shows how to calculate TP, FP and FN when we consider U2R class. TN is
calculated by subtracting (TP, FP, FN) from the sum of the matrix which is 44556
in this case. Same idea applies on each class.

Tables 4.4 - 4.8 show the resulting confusion matrices for each class in NSL-KDD.

And now, we can easily calculate the metrics as follows:

« Overall Accuracy: 2170HA580E8550423041 — 20082 — () 8996
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Predicted
Normal | DoS | Probe | R2L | U2R
Normal | 21761 286 677 | 287 [|106
DoS 1183 | 14535 | 209 74 15 [
Actual | Probe 510 72 3550 | 68 23
R2L 631 77 197 | 235 | |24
U2R 31 1L | 1 211l 1 B

FP

> TP

Figure 4.1: Example on how to calculate TP, FN and FP for U2R class

Normal DR: 21761 — 21761 _ () 94713

21761+1356 ~ 23117

. 14535 _
DoS DR: 1453541481 16016

14535 — ().9075

Probe DR: =350 _ — 3550 — () 84()7

35504673 ~ 4223

R2L DR: 222 = 25 = (.2019

235+929 ~ 1164

U2R DR: +1= = == = 0.0278

1+35 36

Normal FAR: 2355

__ 235 __
2355+19084 ~ 21439 0.1098

DoS FAR: 436 __ — 436 _ () 153

436428104 ~ 28540

Probe FAR: 1084

1084439249 ~ 40333

= 18 = 0.0269

R2L FAR: 2L = 3L — (.0099

431442961 ~ 43392

U2R FAR: 1% = 18— (0037

168+44352 ~ 44520
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Table 4.4: Normal Confusion matrix

Actual

Predicted
Other | Normal
Other 19084 | 2355
Normal | 1356 | 21761

Table 4.6: Probe Confusion matrix

Predicted

Actual

Other

Probe

Other

39249

1084

Probe

673

3550

Table 4.8: U2R Confusion matrix

Table 4.5: DoS Confusion matrix

Actual

Table 4.7: R2L Confusion matrix

Actual

Predicted
Other | DoS
Other | 28104 | 436
DoS 1481 | 14535

Predicted
Other | R2L
Other | 42961 | 431
R2L 929 | 235

Predicted
Other | U2R
Other | 44352 | 168
Actual
U2R 35 1
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Chapter 5

Result Analysis

In this chapter, we first present how we selected the population and iteration
for GWO, and then we conclude the performance analysis of our hybrid feature

selection approach.

5.1 Parameters Tuning for GWO

There are two main factors affecting the convergence and search time of GWO:
population and maximum iterations. Population refers to the number of wolves in
GWO and it is the number of solutions. Maximum iterations is used as a stopping

criteria in GWO.

Since we are using BGWO, which is the binary version of GWO, it is stated
in the original paper [23] that BGWO achieves fast convergence with reasonable
population size and within few iterations. To verify these findings, we choose to
perform our experiments using different combinations of population and iteration
as shown in in Table 5.1. Furthermore, we included all the possibilities of ANOVA
F-value thresholds (percentages of top ranked features). This is to make sure that
we are not doing a biased measurement, and it will be useful to select the most

reasonable ANOVA F-value threshold later on.
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Table 5.1: Chosen values for ANOVA F-value threshold, GWO population, and

GWO iterations

ANOVA F-value

20%, 25%, 30%, 35%, 40%, 45%, 50%,
55%, 60%, 65%, 70%

GWO Population

5, 10, 20

GWO Iteration

10, 20, 40, 70

In terms of convergence, we plotted for each population four graphs, each repre-
senting an iteration value. This is shown in Figures 5.1-5.3, where each line repre-
sents the average value of fitness for each iteration based on a specific threshold from
ANOVA F-value. It can be seen from these figures that 10 iterations are more than
enough for the fitness to converge regardless of the threshold value. The same can
be observed from the selected features per iteration graphs (Figure 5.4-5.6). More-
over, Figures 5.7-5.9 show that having more than 10 iterations will highly affect the

execution time of BGWO without actually having better convergence.

Convergence Curve for Population of 5
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Figure 5.1: GWO Convergence curve when Population is 5
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Convergence Curve for Population of 10
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Figure 5.2: GWO Convergence curve when Population is 10
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Figure 5.3: GWO Convergence curve when Population is 20
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Features Curve for Population of 5
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Features Curve for Population of 20
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Figure 5.6: GWO Selected Features

curve when Population is 20
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Avg BGWO Training Time for Population of 10
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Figure 5.8: GWO Avg Training Time when Population is 10
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Figure 5.9: GWO Avg Training Time when Population is 20

So, the suitable maximum iteration is 10. To determine the suitable population
for this number of iterations, we need to compare the starting and ending values
of the fitness. It is difficult to check these values from Figures 5.1-5.3. Therefore,
we included them separately in Table 5.2. From this table, it can noticed that a
population size of 20 does always have the lowest starting and ending values of the

fitness regardless of the threshold.
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Table 5.2: The starting and ending values of the fitness with 10 iterations

ANOVA F- | Population Starting Fit- | Ending Fitness
value Thresh- ness Value Value
old (Percent-
age)
5 0.11863 0.10972
20 10 0.11345 0.10548
20 0.11065 0.10415
5 0.09167 0.06967
25 10 0.08108 0.06486
20 0.07230 0.06376
5 0.06462 0.04832
30 10 0.05659 0.04202
20 0.04929 0.04084
5 0.03191 0.02541
35 10 0.02931 0.02364
20 0.02803 0.02331
5 0.03115 0.0241
40 10 0.02689 0.02233
20 0.0257 0.02169
5 0.0264 0.02021
45 10 0.02232 0.018
20 0.02071 0.01743
5 0.022 0.01806
50 10 0.02049 0.01703
20 0.0195 0.01635
5 0.02182 0.01761
55 10 0.01912 0.01656
20 0.01857 0.01611
5 0.02086 0.01707
60 10 0.0194 0.01636
20 0.01861 0.01589
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Continuation of Table 5.2

ANOVA F- | Population Starting Fit- | Ending Fitness
value Thresh- ness Value Value
old (Percent-
age)
5 0.02092 0.01736
65 10 0.01984 0.01639
20 0.01799 0.01557
5 0.01854 0.01547
70 10 0.01701 0.01464
20 0.01641 0.01396

5.2 Classification Performance and Selected Fea-

tures

After choosing the population size as 20 and the maximum iterations as 10 for
GWO, we will compare the performance of our hybrid feature selection approach
with: the whole process without ANOVA F-value, and the whole process without
feature selection. As in the previous section, we present the different combinations
of the ANOVA F-value thresholds (see Table 5.1) within our approach.

As a matter of fact, we have noticed that the classifiers of Decision Tree, MLP,
and KNN are already performing well without any feature selection in terms of
overall accuracy, detection rate and false alarm rate for most of the classes. While
SVC achieved lower overall accuracy, it achieved higher detection rate for some
classes. On the other hand, Gaussian NB was the worst among these, especially
when it comes to overall accuracy.

Consequently, our main goal will be to emphasize that using a lower number of
features, we have been able to reduce the training time and testing time of most of
the classifiers while achieving almost the same metrics (less in most cases). At the
same time, we will highlight the reduction in GWO search time.

Throughout our experiments, we have concluded that the threshold of 50% for
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ANOVA F-value is the most balanced threshold. At this threshold, we are able to
say that there is a good reduction in number of features, training time, and testing
time, while achieving almost the same metrics.

Also at this threshold, the features are first reduced from 41 to 20 in ANOVA
F-value (see Figure 5.10), and then it is reduced to an average of 13 feature in
GWO. Figure 5.11 shows the how frequent features were selected during the thirty

experiments.

NSL-KDD Features ANOVA F-value
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Figure 5.10: Average ANOVA F-value for each feature in NSL-KDD. All the 20

features below the horizontal grey line were selected

Compared to GWO only without any prior feature ranking, we can see that the

approach method reduces the search time by five seconds, as shown in Table 5.3.

Table 5.3: GWO with 50% threshold vs. GWO only

Approach Avg Selected Features | Search Time (seconds)
GWO with 50% threshold 13 22.778
GWO without threshold 25 27.029

Based on the threshold of 50%, we start with Figures 5.12a and 5.12b which show
the training time and testing time of the different classifiers. We can see that some

classifiers, such as Decision Tree and Gaussian NB are already fast even without

67



Feature

Intrusion Detection System using Feature Ranking and GWO

Most Selected Features from BGWO with a Percent of 50 from ANOVA F-value
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Figure 5.11: Most frequent features selected by GWO with a threshold of 50%

any feature selection. While for KNN and SVM, the training time and the testing
time are significantly improved with the selected threshold. The training time is
reduced from 75.901 seconds to 17.578 seconds in case of KNN (77% reduction),
and from 498.898 seconds to 191.080 seconds in case of SVM (62% reduction). And
the testing time is reduced from 165.024 seconds to 11.592 seconds in case of KNN
(93% reduction), and from 72.116 seconds to 39.157 seconds in case of SVM (46%
reduction).

If we look at the overall accuracy in Figure 5.13, we can observe that the accuracy
of Gaussian NB was improved using the selected threshold from 36.434% to 81.593%.
For the other classifiers, the accuracy without feature selection is a bit higher, but
still we are able to achieve almost the same accuracy.

When it comes to detection rate of each class (shown in Figures 5.14-5.18), we
can see that there is a similar behavior in Normal and DoS classes DRs to the
behavior we have seen in overall accuracy. This is because these two classes are the
majority, so detecting them is an easier task. While for Probe class, we are getting
similar detection rate except for Gaussian classifier which have a much higher value.
And finally, regarding R2L and U2R classes, these two are the most difficult to
detect in any IDS and using any method because of their low number of records in

the dataset.
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When it comes to False Alarm Rate (FAR) of each class (shown in Figures 5.19-
5.23), we need to remember that having a low FAR is needed, but at the same
time we need the high DR. So, FAR and DR always need to be interpreted together.
Taking this into consideration, the low FAR achieved for R2L and U2R (in all cases)
is useless as it comes with low DR. While the low FAR achieved for DoS and Probe
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(in all cases) is useful as they have high DRs.
Figures 5.24-5.28 and Figures 5.29-5.33 show the precision and F1 score for each
class, respectively.

We have presented all the metrics considering our IDS as a multi-class classifier.

However, if we want to consider our IDS as a binary classifier, then we will have
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only two labels: normal and attack. Figures 5.34a and 5.34b show the training
and testing time of the binary classifier. And Figures 5.35-5.37 show the accuracy,
detection rate, and false alarm rate of the binary classifier.

It is noticed that using 50% as a threshold we have been able to achieve good time

reduction in both training and testing for KNN and SVM, while achieving similar
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performance in the other metrics. For KNN, the training time is reduced from
17.264 seconds to 6.949 seconds (59% reduction), and the testing time is reduced
from 33.803 seconds to 3.663 seconds (89% reduction). For SVM, the training time
is reduced from 368.507 seconds to 119.024 seconds (68% reduction), and the testing
time is reduced from 31.782 seconds to 16.565 seconds (48% reduction). As for the
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other classifiers, they are already fast in training and testing, and we are achieving

similar metrics.
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5.3 Summary

In this chapter, we discussed first how to tune GWO parameters. GWO perfor-
mance is measured by its ability to convergence fast and to the lowest possible fitness
value. There are two main parameters that control GWO convergence and search
time: population size, and maximum iterations. Population size is the number of
solutions, and maximum iterations serves as the stopping criteria. After doing ex-
periments on several combinations of these two parameters alongside with different
ANOVA F-value thresholds, we have concluded that a maximum iterations of 10
is enough to converge, and a population size of 20 has the lowest starting value of
fitness and the lowest ending value of fitness.

After that, we discussed thoroughly the performance of the proposed approach
using the selected parameters for GWO. Throughout the experiments, we have con-
cluded that the most balanced threshold for top ranked features from ANOVA F-
value is a threshold of 50%. By balanced we mean, that it selects reasonable number
of features that reduces the training time and testing time of the classifier while
achieving similar classification performance.

In general, the proposed approach did not improve the classification performance
of the classifiers, but at least it achieved similar results in less time and less dimen-
sion. The only exception to this is Naive Bayes, in which the overall accuracy was
improved in multi-class classification. The major improvements in training time and
testing time were in KNN and SVM, in both multi-class classification and binary

classification.
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Chapter 6

Conclusion and Future Work

In this study, we proposed a hybrid feature selection approach to address two

challenges in any IDS:

1. Reduce dimensionality, and achieve short training time and near real-time

prediction.

2. Achieve high detection rate, high accuracy, and low false alarm rate at the

same time.

The hybrid approach uses ANOVA F-value in the first stage, and then it uses a
wrapper method with GWO as a search strategy and Random Forest for evaluation
in the second stage. We applied the proposed approach on NSL-KDD dataset,
where we had first to transform nominal features to numerical using probability
density function (PDF), and then we had to normalize numerical features using
min-max. After that, we applied the proposed feature selection method. At the last
stage, multi-class classification was applied using one-vs-rest strategy. We used five
common classifiers: SVM, KNN, ANN, Naive Bayes, and Decision Tree.

We ran 30 experiments on the whole dataset. In each experiment, the data was
randomly shuffled and then separated in a stratified fashion (to guarantee same
distribution as original data) to 70% training data and 30% testing data. For each
metric, the average of the 30 runs was computed.

The performance of the proposed approach was compared to the performance of
classifiers without feature selection, and to feature selection using GWO only. After

analyzing the results, we can conclude the following:
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o The best parameters for having a well-performing GWO in terms of fast con-
vergence and short search time are: a population size of 20 and maximum

iterations of 10.

e The hybrid feature selection approach we proposed uses a threshold of 50%
from feature ranking and then applies GWO. We have been able to reduce the
search time of GWO by 18% while selecting a smaller subset of features. Our
approach resulted in a feature reduction from 41 to 13 (68% reduction), while

GWO only reduced the features from 41 to 25 (39% reduction).

o Multi-class classification: we have aimed to reduce the classification training
time and testing time, while achieving similar or better classification perfor-
mance. However, we have seen that the proposed approach did not improve
the classification performance except for few cases (e.g. GaussianNB classi-
fier), but at least it achieved similar performance with better time and less
dimension. For some classifiers, the reduction was negligible, while for others
it was worthy. For KNN, the training time was reduced by 77% and the
testing time was reduced by 93%. For SVM, the training time was reduced
by 62% and the testing time was reduced by 46%.

» Binary classification: same applies here, we have been able to achieve similar
performance with time reduction and less dimension. Again, the time reduc-
tion was obvious in KNN and SVM. For KNN, the training time was reduced
by 59% and the testing time was reduced by 89%. For SVM, the training

time was reduced by 68% and the testing time was reduced by 48%.

As noticed above, the proposed approach showed few improvements compared
to the classifiers without feature selection. The justification behind this is that
NSL-KDD is not that challenging to most computing processors nowadays. It has
a dimension of 41 features, and it consists of around 150,000 records. The main
reasons to choose it were its popularity, and its simplicity.

In the future, we aim to experiment the proposed approach on more recent and larger
datasets, such as CIC-IDS-217 and CSE-CIC-IDS-2018. We could not include those

datasets in the scope of this study, because they need more analysis, data cleaning,
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and data sampling. We also aim to experiment with several swarm intelligence

algorithms such as FA and WSO.
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Appendix A

Implementation

[ ]: import feather
import numpy as np

from sklearn.model_selection import train_test_split

First we define the features order as in NSL-KDD

[ 1: basic_features = ["duration",
"protocol_type",
"service",
"flag",
"src_bytes",
"dst_bytes",
"land",
"wrong_fragment",
"urgent"]
content features = ["hot",

"num_failed_logins",

"logged in",

"num_compromised",

"root shell",

"su_attempted",

"num root",
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"num file creations",
"num_shells",
"num access_files",
"num outbound cmds",
"is_host_login",
"is_guest_login"]
time_based traffic_features = ["count",
"srv_count",
"serror_rate",
"srv_serror_ rate'",
"rerror_rate",
"srv_rerror_rate",
"same_srv_rate",
"diff srv_rate",
"srv_diff host_rate"]
host based traffic features = ["dst _host count",
"dst_host _srv_count",
"dst_host_same_srv_rate",
"dst_host_diff srv_rate",
"dst_host_same_src_port_rate",
"dst_host srv_diff host rate",
"dst_host_serror_rate",
"dst_host_srv_serror rate",
"dst_host _rerror rate",
"dst_host_srv_rerror_rate"]
attr_names = basic_features + content_ features +
—time based traffic features + host based traffic features

col _names = attr_names + ["label", "difficulty"]

Then, we define the mapping of NSL-KDD to five categories
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# Normal --> 0, DoS --> 1, Probe —-> 2, R2L --> 3, U2R -—> 4
five_labels_dict = {'normal': O, 'neptune': 1, 'back': 1, 'land':,
-1, 'pod': 1, 'smurf': 1, 'teardrop': 1,
'mailbomb': 1,
'apache2': 1,
'processtable': 1, 'udpstorm': 1, 'worm': 1,
'ipsweep': 2, 'mmap': 2, 'portsweep': 2,
—'satan': 2, 'mscan': 2, 'saint': 2,
'"ftp_write': 3, 'guess_passwd': 3, 'imap': 3,
—'multihop': 3, 'phf': 3, 'spy': 3,
'warezclient': 3,
'warezmaster': 3, 'sendmail': 3, 'mamed': 3,
- 'snmpgetattack': 3, 'snmpguess': 3, 'xlock': 3,
'xsnoop': 3,
'httptunnel': 3,
'buffer overflow': 4, 'loadmodule': 4, 'perl':,
—~4, 'rootkit': 4, 'ps': 4, 'sqlattack': 4,

'xterm': 4%}

Here we define the function that will read NSL-KDD, shuffle the data
and split it to 70% training and 30% testing

def read data(multi_class, rand, test_size=0.3):
df = feather.read dataframe("KDDTrain+.feather")
df test = feather.read dataframe("KDDTest+.feather")
df .drop("difficulty", axis=1, inplace=True)

df test.drop("difficulty", axis=1, inplace=True)

X_train_original = df.drop('label', axis=1)
X_test_original = df_test.drop('label', axis=1)

X _final = X_train original.append(X_test_original)
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y_train original = df['label'].replace(five_labels _dict).
—values.astype('int') .ravel()

y_test_original = df test['label'].replace(five_labels_dict).
—values.astype('int') .ravel()

y_final = np.concatenate((y_train_original, y_test_original))

X_train, X _test, y_train, y_test = train test_split(X_final,
—y_final, test_size=test_size, random_state=rand,

—stratify=y_final)

if not multi class:
y_train[y_train > 0] = 1

y_test[y_test > 0] = 1

return X_train, X_test, y_train, y_test

This is the implementation of PDF used for transforming nominal fea-

tures to numerical
from sklearn.base import BaseEstimator, TransformerMixin
def column_pdf(df, column_name):

column_histogram = df [column_name] .value_counts()

column_sum = column_histogram.sum()

return column_histogram.transform(lambda s: s / column_sum)

class PdfTransformer (BaseEstimator, TransformerMixin):

def __init__(self):

super (). __init__Q)
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def fit(self, X, y=None):
self.columnns pdfs = {clmn: column pdf (X, clmn).to_dict(),
~for clmn, _ in X.iteritems()}

return self

def transform(self, X, y='', copy=None):
for clmn, _ in X.iteritems():
X[clmn] = X[clmn] .map(self.columnns pdfs[clmn]).
~£111na(0)

return X

import random

import time

from joblib import Parallel, delayed
from skfuzzy.membership import sigmf
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

This class will contain all the attributes we want from GWO

class solution:
def __init__(self):

self .best = 0
self .bestIndividual = []
self.convergence = []
self.features = []
self .optimizer = ""
self .objfname = ""
self.startTime = 0
self.endTime = O

self.executionTime = 0
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self.1b = 0

self.ub = 0
self.dim = O
self.popnum = O

self .maxiers = 0

This is the cross over used in GWO

def cross_over(x_1, x 2, x_3):
r = random.random()
if r < 0.333:
return x_1
elif r < 0.6666:
return x_2
else:

return x_3

And this is the fitness function used in GWO

def fitness_func(args):

positions, X_train, y_train, X_test, y_test = args

sz w = 0.01

mnimnn

Fitness function to be passed to bGWO
:param z: current positions for a specific search agent ing,
—~bGW0

:return: fitness value

nnn

current_selected_features_indexes = np.where(positions == 1) [0]
X_train_current = np.copy(X_trainl[:,

—current selected features indexes[
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0:11) # slice training,

—~data based on current_selected_features_indezxes

X_test_current = np.copy(X_testl[:,
—,current_selected features_indexes[

0:11) # slice testing datay

—based on current_selected_features_indezes

# a case where no features where selected, the fitness willy
—be inf, indicating a bad classification

if np.sum(positions) == 0:

return float("inf")

bgwo_fitness_classifier = RandomForestClassifier(n_jobs=-1,

—n_estimators=5)

bgwo_fitness_classifier = bgwo_fitness_classifier.
~fit(X_train_current, y_train)

# predict the class labels of test data

y_predict = bgwo_fitness classifier.predict(X_test_current)

success_rate = accuracy_score(y_test, y_predict)

return (1 - sz_w) * (1 - success_rate) + sz_w * np.

—sum(positions) / np.alen(positions)

And this the implementation of BGWO (inspired from the original imple-
mentation in Matlab and from GWO implementation in EvoloPy repos-

itory)

def BGWO(X, y, search agents no, max_iter, test_size=0.30,
—random_state=42):

dim = X.shape[1]

X_train, X_test, y_train, y_test = train_test_split(X, y,.

. test_size=test _size, random_ state=random_state)

1b =0
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ub

1

mb = float((1lb + ub) / 2)
# inittalize alpha, beta, and delta_pos
alpha pos = np.zeros(dim)

alpha_score = float("inf")

beta_pos = np.zeros(dim)

beta_score = float("inf")

delta_pos = np.zeros(dim)

delta_score = float("inf")

# Initialize the positions of search agents

positions = np.random.uniform(lb, ub, (search_agents_no, dim))
~* (ub - 1b) + 1b

# make sure that all positions are O and 1

positions = positions > 0.5

positions = positions.astype(int)

convergence_curve = np.zeros(max_iter)
features_curve = np.zeros(max_iter)

s = solution()

timer start = time.time()

s.startTime = time.strftime("),Y-Ym-%d-%H-%M-%S")
# Main loop
for 1 in range(0, max_iter):
nargs = [(positions[i, :].copy(), X_train, y_train,

~X_test, y_test) for i in range(0, search_agents_no)]
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fitness_list = Parallel(n_jobs=-1,,
—prefer='threads') (delayed(fitness_func) (arg) for arg in nargs)
for i in range(0, search_agents_no):
fitness = fitness list[il
# Update Alpha, Beta, and Delta
if fitness < alpha_score:
alpha_score = fitness # Update alpha
alpha_pos = positions[i, :].copyQ
s.bestIndividual = alpha_pos # always store besty

—solution so far

if alpha_score < fitness < beta_score:
beta_score = fitness # Update beta

beta_pos = positions[i, :].copy()

if alpha_score < fitness < delta_score and fitness >
—beta_score:
delta_score = fitness # Update delta

delta_pos = positions[i, :].copy()

a=2-1x% (2 / max_iter) # a decreases linearly from 2,

~to 0

# Update the Position of search agents including omegas
for i in range(0, search_agents_no):
for j in range(0, dim):

random.random() # 71 is a random number in,

ri
- [0,1]

r2 = random.random() # 72 %45 a random number in,

-~ [0,1]
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al = 2 xax*xrl - a # Equation (3.3)

cl =2 % r2 # Equation (3.4)

d_alpha = abs(cl * alpha _pos[j] - positions([i, jl).
— # Equation (3.5)-part 1

vl = sigmf(-al * d_alpha, 0.5, 10) # apply,

—sigmoid on —al * d_alpha

vl = 0 if vl < np.random.rand() else 1

x1 = alpha _pos[j] + vl # Equation (3.6)-part 1

x1 = int(x1 >= 1)

rl = random.random() # 71 %s a random number in
~[0,1]

r2 = random.random() # 72 is a random number in
~[0,1]

a2 = 2 x a*xrl - a # Equation (3.3)
c2

I
N
*

r2 # Equation (3.4)

d_beta = abs(c2 * beta_pos[j] - positions[i, jl)

~# Equation (3.5)-part 2

vl = sigmf(-a2 * d_beta, 0.5, 10) # apply sigmoidy,

—on —-a2 * d_beta

vl = 0 if vl < np.random.rand() else 1

x2 = beta_pos[j] + vl # Equation (3.6)-part 2
x2 = int(x2 >= 1)

rl = random.random()

r2 = random.random()

a3 =2 % axrl - a # Equation (3.3)
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c3 =2 x r2 # Equation (3.4)

d_delta = abs(c3 * delta_pos[j] - positions[i, jl).
-~ # Equation (3.5)-part 3
vl = sigmf(-a3 * d_delta, 0.5, 10) # apply,

—~sigmoid on —-a3 * d_delta

vl = 0 if vl < np.random.rand() else 1
x3 = delta_pos[j] + vl # Equation (3.6)-part 2
x3 = int(x3 >= 1)

positions[i, j] = cross_over(xl, x2, x3)
convergence_curve[l] = alpha_score

features_curve[l] = np.sum(alpha_pos)

timer end = time.time()

s.endTime = time.strftime("},Y-Y%m-%d-%H-%M-%S")
s.executionTime = timer_end - timer_start
S.convergence = convergence_curve

s.features = features curve

s.optimizer = "GWO"

s.objfname = fitness_func.__name_ _

return s

We define BGWO as a classifier following sklearn pattern

from sklearn.feature_selection.base import SelectorMixin

class BgwoClassifier (BaseEstimator, SelectorMixin):

def __init__(self, population_size, iterations, test_size,

—random_state) :
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self .population_size = population_size
self.iterations = iterations
self .test_size = test_size

self .random_state = random_state

def fit(self, X, y):

# solution = WBGWO(X, y, self.population_size, self.

~iterations)

solution = BGWO(X, y, self.population_size, self.

—,iterations, self.test_size, self.random_state)

sol = solution.bestIndividual.astype(int)

is_empty_solution = np.sum(sol) ==

# select all features in case there was no solution

selected_features_indexes = np.where(sol == (0 if,

—is_empty_solution else 1)) [0]

self .support_ = np.array(sol, dtype=bool)

self.n_features_ = np.alen(selected features_indexes)

self .selected_features_indexes_ = selected_features_indexes
self.convergence_ = solution.convergence
self.features_curve_ = solution.features

return self

def _get_support_mask(self):

from
from
from

from

return self.support_

sklearn.compose import ColumnTransformer
sklearn.feature_selection import f_classif, SelectPercentile
sklearn.metrics import recall score, precision_score, fl score

sklearn.metrics import confusion_matrix

109



Intrusion Detection System using Feature Ranking and GWO

from
from
from
from
from
from
from

from

sklearn.
sklearn.

sklearn.

sklearn

sklearn

sklearn.
sklearn.

sklearn.

These are the
KDD dataset

[ ]: split_randoms

—298,

multiclass import OneVsRestClassifier
naive_bayes import GaussianNB

neighbors import KNeighborsClassifier

.neural_network import MLPClassifier

.pipeline import Pipeline

preprocessing import MinMaxScaler
svm import SVC

tree import DecisionTreeClassifier

random numbers used to perform 30 experiments on NSL-

= [91, 568, 130, 416, 948, 314, 41, 294, 157, 777,

127, 450, 966, 597, 236, 351, 109, 510, 660,

490, 554, 814, 287, 971, 981, 333, 30, 555, 735]

These are the five classifiers used in the experiments

[ 1: classifiers

= [(DecisionTreeClassifier, DecisionTreeClassifier()),

(GaussianNB, GaussianNB()),
(MLPClassifier, MLPClassifier(verbose=True)),

(KNeighborsClassifier,

—KNeighborsClassifier(n_jobs=-1)),

(SVC, SVC(verbose=True))]

These are the main parameters that control the proposed approach

[ 1: # Algorithm parameters

multi _class = True

use_selector

= True

use_gwo = True

percentile =

50

population_size = 20

max_iterations = 10
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classifier_inst = DecisionTreeClassifier()
if multi class:
# enable parallelism
classifier_instance = OneVsRestClassifier(classifier_inst,,

—~n_jobs=-1)

First step in the proposed approach: split the data into 70% training and
30% testing

# Read inputs
X_train, X_test, y_train, y_test =,

—~read_data(multi_class=multi_class, rand=split_randoms[0])

Second step in the proposed approach: Preprocess training and testing

datasets

# Prepare nominal features transformation and numerical features,
—scaling
boolean_features_set = {'land', 'logged_in', 'is_host_login',,
—'is_guest_login'}
boolean features = list(boolean features_set.
—intersection(set (X _train.columns.to list())))
numerical_ix = X_train.select_dtypes(include=['int64', 'float64']).
—»columns.drop(boolean_features)
categorical_ix = X_train.select_dtypes(include=['object']).columns
clmn_transformer = ColumnTransformer (transformers=[('num',
—MinMaxScaler(), numerical_ix), # numerical features scaling
("caw!
—PdfTransformer(), categorical_ix)], # nominal features,
—transformation
remainder='passthrough',

—n_jobs=-1) # keep the reset as ts
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# Prepare preprocessing pipeline
pipeline _steps = [('clmn transformer', clmn_transformer)]
if use_selector:
selector_classifier = SelectPercentile(f classif,
—percentile=percentile)
pipeline_steps.append(('selector_classifier',,
—.selector_classifier))
if use_gwo:
bgwo_classifier = BgwoClassifier(population_size,;
—max_iterations, 0.10, 22)
pipeline_steps.append(('bgwo_classifier', bgwo_classifier))

preprocessing pipeline = Pipeline(pipeline_steps, verbose=True)

# Train preprocessing pipeline, and preprocess training data
X_train = preprocessing pipeline.fit_transform(X_train, y_train)
# Preprocess testing data

X_test = preprocessing pipeline.transform(X_test)

Third step in the proposed approach: perform classification training and

testing

# Train the classifier

classifier_inst = classifier_inst.fit(X_train, y_train)

# Test the classtifier

y_pred_curr = classifier_inst.predict(X_test)

Print all the metrics

# Print the metrics
if multi_class:
conf matrix = confusion matrix(y_test, y_pred_curr)

FP = conf_matrix.sum(axis=0) - np.diag(conf matrix)

112



Intrusion Detection System using Feature Ranking and GWO

FN = conf matrix.sum(axis=1) - np.diag(conf matrix)
TP = np.diag(conf matrix)

TN = conf matrix.sum() - (FP + FN + TP)

fp = FP.astype(float)

fn = FN.astype(float)

tp = TP.astype(float)

tn = TN.astype(float)

# DoS -> 1, Probe -> 2, R2L -> 3, URR -> 4

accuracy = accuracy_score(y_test, y_pred_curr)

recall score_arr = recall score(y_test, y_pred_curr,
—average=None)

false_alarm rate arr = fp / (fp + tn)

precision_score_arr = precision_score(y_test, y_pred_curr,,
—average=None)

f1 score_arr = f1_score(y_test, y_pred_curr, average=None)

print ('Accuracy: {accl}'.format(acc=accuracy))

normal detection_rate = recall score_arr[0]
normal false alarm rate = false alarm rate_ arr[0]
normal precision = precision_score_arr[0]

normal f1 = f1 score arr[0]

print ('Normal DR: {recalll}, Normal FAR: {far}, Normal
~Precision: {precision}, Normal f1: {f1}'
.format (recall=normal detection rate,
precision=normal precision,
fl=normal f1,

far=normal false alarm rate))
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dos_detection_rate = recall score_arr[1]
dos_false alarm rate = false alarm rate arr[1]
dos_precision = precision_score_arr[1]

dos_f1 = f1 score_arr[1]

print('DoS DR: {recall}, DoS FAR: {far}, DoS Precision:
—{precision}, DoS f1: {f1}'
.format (recall=dos_detection_rate,
precision=dos_precision,
fl=dos_f£1,

far=dos_false _alarm_rate))

probe_detection_rate = recall score_arr[2]
probe_false_alarm rate = false alarm rate_arr[2]
probe_precision = precision_score_arr[2]

probe _f1 = f1 score_arr[2]

print ('Probe DR: {recall}, Probe FAR: {far}, Probe Precision:
~{precision}, Probe f1: {f1}'
.format (recall=probe_detection_rate,
precision=probe_precision,
fl=probe_f1,

far=probe_false_alarm rate))

r2]1 detection_rate = recall score_arr[3]
r2]1 false alarm rate = false_alarm_rate_arr[3]
r2]l precision = precision_score_arr[3]

r21 f1 = f1 score_arr[3]

print ('R2L DR: {recall}, R2L FAR: {far}, R2L Precision:
~{precision}, R2L f1: {f1}'
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.format (recall=r21 detection_rate,
precision=r21 precision,
f1=r21 f1,

far=r21 false alarm_rate))

u2r_detection_rate = recall score_arr[4]
u2r false alarm rate = false alarm rate arr[4]
u2r_precision = precision_score_arr[4]

u2r f1 = f1 score_arr[4]

print ('U2R DR: {recalll}, U2R FAR: {far}, U2R Precision:
~{precision}, U2R f1: {f1}'
.format (recall=u2r detection rate,
precision=u2r_precision,
fl=u2r f1,
far=u2r false alarm rate))
else:
conf matrix = confusion matrix(y_test, y_pred_curr)

tn = conf matrix[0, 0]

fn = conf matrix[1, O]
tp = conf matrix[1, 1]
fp = conf matrix[0, 1]

accuracy = accuracy_score(y_test, y_pred_curr)

detection_rate = recall score(y_test, y_pred_curr)

false_alarm _rate = fp / (fp + tn)

precision = precision_score(y_test, y_pred_curr)

f1 = f1_score(y_test, y_pred_curr)

print ('Accuracy: {acc}, DR: {recall}, FAR: {far}, Precision:
~{precision}, f1: {f1}'

.format (acc=accuracy,

recall=detection_rate,
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precision=precision,
f1=£f1,

far=false alarm rate))

116



	Introduction
	Intrusion Detection System (IDS)
	Machine Learning in Anomaly-based Detection
	Problem Statement and Motivation
	Thesis Outline

	Foundation and Literature Review
	Theoretical Foundation
	Feature Selection
	Filter Approaches
	Wrapper Approaches
	Embedded Approaches
	Hybrid Approaches

	Metaheursitc Algorithms
	Single-based Metaheuristic Algorithms
	Population-based Metaheuristic Algorithms


	Related Work
	Summary

	Hybrid Feature Selection using Feature Ranking and GWO
	Overview
	NSL-KDD
	Overview
	Description

	Nominal Features Transformation using  Probability Density Function (PDF)
	Numerical Features Normalization  using Min-Max
	Feature Ranking using ANOVA F-value
	Feature Selection using BGWO
	Multi-class Classification using  One-vs-rest Strategy
	Summary

	Experimental Setup and Evaluation Metrics
	Methodology
	Environment and Implementation Tools
	Evaluation Metrics

	Result Analysis
	Parameters Tuning for GWO
	Classification Performance and Selected Features
	Summary

	Conclusion and Future Work
	References
	Implementation

